期刊文献+

一类混合增长系统的度分布

Degree Distribution of a Both Preferential and Random Growth System
原文传递
导出
摘要 本文对K-K择优增长系统作出进一步的研究,提出一类既有择优增长、又有随机增长的混合增长系统,利用马氏链方法严格证明了系统度分布的存在性,并给出其精确解。结论表明只要系统中存在择优增长,该系统即为无标度系统,且系统的度指数随着择优增长所占比重不同而变化. We study a class of preferential growth system (K-K model) and promote the model to a both preferential and random growth system. Based on the Markov chain theory, we get the rigorous proof for the existence of the steady-state degree distribution and obtain the exact solution. The conclusion shows that as long as the preferential growth existed in the system, the system has scale-free property, and the index of degree distribution changes in accordance with the proportion for preferential growth to both preferential and random growth of the system.
出处 《应用数学学报》 CSCD 北大核心 2015年第4期577-585,共9页 Acta Mathematicae Applicatae Sinica
基金 数学天元基金(11226200) 安徽省高等学校省级自然科学研究项目(KJ2013Z268 2014KJ011) 阜阳师范学院科研项目(2013FSKJ11)资助
关键词 混合增长系统 度分布 无标度性 马氏链 preferential and random growth system steady-state degree distribution scale-free property Markov chain
  • 相关文献

参考文献13

  • 1Watts D, Strogatz S, Collective Dynamics of "small world" Networks. Nature, 1998, 393:440-442.
  • 2Barabasi A, Albert R. Emergence of scaling in random networks. Science, 1999, 286:509-512.
  • 3Krapivsky, Redner S, Leyvraz F. Connectivity of growing random networks. Physical Review Letters, 2000, 85:4629-4632.
  • 4Dorogovtsev S N, Mendes J. Scaling properties of scale-free evolving networks: continuous approach. Physical Review E, 2001, 63(5): 056125-056143.
  • 5Bianconi G, Barabasi A. Competition and multiscaling in evolving networks. Euro physics Letter, 2011, 54:436-4421.
  • 6Barabasi A, Albert R. Mean-field theory for scale-free random network. Physical A, 1999, 272: 173-187.
  • 7Krapivsky, Redner, Leyvraz F. Connectivity of growing random networks. Physics Review Letters, 2000, 85:4629-4632.
  • 8Dorogovtsev S N, Mendes J. Structure of growth networks with preferential linking. Physical Review Letters, 2000, 85:4633-4636.
  • 9Shi D H, Chen Q H, Liu L M. Markov chain-based numerical method for degree distributions of growing networks. Physical Review E, 2005, 71:446-452.
  • 10侯振挺,孔祥星,史定华,陈关荣.BA模型的数学基础[J].数学物理学报(A辑),2010,30(5):1313-1321. 被引量:2

二级参考文献22

  • 1Watts D, Strogatz S. Collective dynamics of "small-world" networks. Nature, 1998, 393:440-442.
  • 2Erdos P, Renyi A. On random graphs. Publications Mathematicae, 1959, 6:290-297.
  • 3Barabasi A, Albert R. Emergence of scaling in random networks. Science, 1999, 286:509- 512.
  • 4Barabasi A, Albert R, Jeong H. Mean-field theory for scale-free random networks. Physica A, 1999, 272 173-187.
  • 5Krapivsky P, Redner S, Leyvraz F. Connectivity of growing random networks. Physical review letters, 2000, 85:4629-4632.
  • 6Dorogovtsev S, Mendes J F, Samukhin A. Structure of growing networks: Exact solution of the BarabasiAlbert model. Physical review letters, 2000, 85:4633-4636.
  • 7Dorogovtsev S, Mendes J F. Effect of the accelerated growth of communications networks on their structure. Physical review E, 2001, 63:025101.
  • 8Bollobas B, Riordan O M. Mathematical Results on Scale-free Random Graphs, I//Bornholdt S, Schuster H G eds. Handbook of Graphs and Networks: From the Cenome to the Internet. Berlin: Wiley-VCH, 2003:1-34.
  • 9Bollobas B, Riordan O, Spencer J, Tusnady G. The degree sequence of a scale-free random graph process. Random Structures and Algorithms, 2001, 18:279-290.
  • 10Holme P, Kim B. Growing scale-free networks with tunable clustering. Physical review E, 2002, 65:026107.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部