摘要
本文研究了具有周期复系数的2n阶J-对称微分算子,利用分析和算子理论的方法,得到了这类J-对称微分算子是本质J-自伴微分算子,并给出它的谱为纯连续谱且在复平面上或者是由一些解析弧段构成,或者是整个复平面.
In this paper, we study the J-symmetric differential operators of 2n-th order with periodic complex coefficients. Using the methods of analysis and operator theory, we obtain that the J-symmetric differential operators are essential J-self-adjoint operators in L2(-∞, +∞) and only have continuous spectrum. The distribution of their spectrum in the complex plane consist, either of an infinite number of analytic arcs , or fills the whole complex plane.
出处
《应用数学学报》
CSCD
北大核心
2015年第4期699-707,共9页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11171295)资助项目
关键词
周期复系数
J-自伴算子
点谱
连续谱
解析弧段
periodic complex coefficients
J-self-adjoint operator
point spectrum
continuous spectrum
analytic arcs