期刊文献+

完全二部图的λ重K_(p,p-)因子大集的存在谱

The Existence Spectrum of Large Set of λ-fold K_(p,p)-factor of Complete Bipartite Graph
原文传递
导出
摘要 若G的一个生成子图H可以分拆为一些与F同构的子图(称为F-区组),且G的每个顶点恰出现在λ个F-区组中,则称H为G的一个λ重F-因子,记为S_λ(1,F,G).图G的λ重F-因子大集,记为LS_λ(1,F,G),是图G中所有与F同构的子图的一个分拆{B_i}i,使得每个B_i均为一个S_λ(1,F,G).本文中,我们研究了完全二部图K_(m,n)的λ重K_(p,p-)因子大集(即LS_λ(1,K_(p,p),K_(m,n)))的存在性,并且得到了该大集的存在谱,其中p是任意素数. Let H be a spanning subgraph of G, if H can be partitioned into some subgraphs isomorphic to F (called F-blocks), and each vertex of G appears in exactly λ blocks, then H is called a λ-fold F-factor of G, denoted by Sλ(1, F, G). A large set of λ-fold F-factor of G, denoted by LSλ(1, F, G), is a partition {Bi}i of all subgraphs of G isomorphic to F, such that each Bi is a λ-fold F-factor of G. In this paper, we investigate the large set of λ-fold Kp,p-factor of Km,n (i.e. LSλ(1, Kp,p, Km,n)) and obtain its existence spectrum, where p is a prime.
出处 《应用数学学报》 CSCD 北大核心 2015年第4期730-734,共5页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11401158 11171089) 河北省高等学校科学技术研究项目(QN2015240) 河北经贸大学科研基金(2014KYQ04)资助项目
关键词 大集 Kp p-因子 完全二部图 large set Kp,p-factor complete bipartite graph
  • 相关文献

参考文献11

  • 1Yamamoto S, Tazawa S, Ushio K, et al. Design of a Balanced Multiple-valued File Organization Scheme with the Least Redundancy. ACM Trans Database System, 1979, 4:518-530.
  • 2Ushio K. P3-factorization of Complete Bipartite Graphs. Discrete Math., 1988, 72:361-366.
  • 3Du B. K1,p2-factorization of Complete Bipartite Graphs. Discrete Math., 1998, 187:273-279.
  • 4Du B. K1,pq-factorization of Complete Bipartite Graphs. Austral J. Combin., 2002, 26:85-92.
  • 5Du B, Wang J. K1,k-factorization of Complete Bipartite Graphs. Discrete Math., 2002, 259:301-306.
  • 6Martin N. Complete Bipartite Factorizations by Complete Bipartite Graphs. Discrete Math., 1997, 167/168:461-480.
  • 7Wang H. On K1,k-factorizations of a Complete Bipartite Graph. Discrete Math., 1994, 126:359-364.
  • 8Baranyai Z. On the Factorizitions of the Complete Uniform Hypergraph, Finite and Infinite Sets. Colloq. Math. Soc., Janos Bolyai, North-Holtand, Amsterdam, 1975, 10:91-108.
  • 9Hao G, Kang Q. Large Sets of λ-fold P3-factors in K Ars Combin., 2010, 96:321-329.
  • 10Hao G, Kang Q. Large Sets of λ-fold K1,3-factors of Complete Bipartite Graphs. Ars Combin., 2012, 107:465- 472.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部