摘要
若G的一个生成子图H可以分拆为一些与F同构的子图(称为F-区组),且G的每个顶点恰出现在λ个F-区组中,则称H为G的一个λ重F-因子,记为S_λ(1,F,G).图G的λ重F-因子大集,记为LS_λ(1,F,G),是图G中所有与F同构的子图的一个分拆{B_i}i,使得每个B_i均为一个S_λ(1,F,G).本文中,我们研究了完全二部图K_(m,n)的λ重K_(p,p-)因子大集(即LS_λ(1,K_(p,p),K_(m,n)))的存在性,并且得到了该大集的存在谱,其中p是任意素数.
Let H be a spanning subgraph of G, if H can be partitioned into some subgraphs isomorphic to F (called F-blocks), and each vertex of G appears in exactly λ blocks, then H is called a λ-fold F-factor of G, denoted by Sλ(1, F, G). A large set of λ-fold F-factor of G, denoted by LSλ(1, F, G), is a partition {Bi}i of all subgraphs of G isomorphic to F, such that each Bi is a λ-fold F-factor of G. In this paper, we investigate the large set of λ-fold Kp,p-factor of Km,n (i.e. LSλ(1, Kp,p, Km,n)) and obtain its existence spectrum, where p is a prime.
出处
《应用数学学报》
CSCD
北大核心
2015年第4期730-734,共5页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11401158
11171089)
河北省高等学校科学技术研究项目(QN2015240)
河北经贸大学科研基金(2014KYQ04)资助项目
关键词
大集
Kp
p-因子
完全二部图
large set
Kp,p-factor
complete bipartite graph