期刊文献+

交联剂含量对碱性阴离子交换膜性能的影响 被引量:2

Effect of the Content of Crosslinker on the Performance of Alkaline Anion Exchange Membrane
下载PDF
导出
摘要 通过紫外光引发聚合的方法制备了碱性阴离子交换膜,通过万能试样机、热重分析仪和电化学工作站研究了碱性阴离子交换膜的机械性能、热稳定性和电导率,并考察了交联剂对二乙烯基苯的含量对碱性阴离子交换膜性能的影响。实验结果表明交联剂的含量对碱性阴离子交换膜热稳性几乎没有影响;随着交联剂含量的增加,碱性阴离子交换膜的弹性模量和抗张强度逐渐增大,但是阴离子交换膜的吸水率、溶胀度和电导率逐渐降低。通过控制交联剂的含量可以很好地调节碱性阴离子交换膜的综合性能,当交联剂质量分数为4%时,碱性阴离子交换膜的抗张强度为13.6MPa,弹性模量为449MPa,30℃时电导率达到3.3×10-2S·cm-1,这些实验结果表明该类碱性阴离子交换膜具有很好的应用前景。 Alkaline anion-exchange membranes thermal stability, mechanical properties (AEMs) are prepared and conductivity of by irradiation with UV light. The AEMs were characterized by thermogravimetric analyzer, Instron universal testing machine and electrochemical workstation, respec- tively. The effect of crosslinker (divinylbenzene, DVB) content on the properties of the AEMs was sys- tematically studied. The results showed that the crosslinker content has little influence on the thermal sta- bility of the AEMs. The values of tensile strength and elastic modulus of the AEMs are increased, while the water uptake, swelling degree and conductivity of AEMs are decreased with increasing the crossliker content. The properties of the AEMs could be well adjusted by changing the content of crosslinker. The AEM with 40/00 DVB shows the tensile strength of 13.6MPa, elastic modulus of 449MPa, and the conduc- tivity of 3.3 × 10-2 S · cm-1 at 30℃. The AEMs show good potential applications in alkaline anion ex- change membrane fuel cells.
出处 《常州大学学报(自然科学版)》 CAS 2015年第3期13-17,共5页 Journal of Changzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(51303017 21476031)
关键词 离子液体 交联剂 阴离子交换膜 燃料电池 ionic liquids cross-linker anion exchange membrane fuel cells
  • 相关文献

参考文献15

  • 1刘勇,刘世斌,张忠林,郝晓刚.阴离子膜直接甲醇燃料电池[J].电源技术,2006,30(2):125-129. 被引量:5
  • 2于景荣,邢丹敏,刘富强,刘建国,衣宝廉.燃料电池用质子交换膜的研究进展[J].电化学,2001,7(4):385-395. 被引量:23
  • 3XU T, LIU Z, LI Y, et al. Preparation and characterization of type II anion exchange membranes from poly(2,6-dimethyl 1,4- phenyleneoxide) (PPO) [J]. J Memb Sci, 2008, 320 (1-2): 232-239.
  • 4COUTURE G, ALAAEDDINE A, BOSCHET F, et al. Poly- meric materials as anion-exchange membranes for alkaline fuel cells [J]. Prog Polym Sci, 2011, 36 (11): 1521-1557.
  • 5LIN B, QIU L, LU J, YAN F. Cross linked alkaline ionic liquid- based polymer electrolytes for alkaline fuel cell applications [J]. Chem Mater, 2010, 22 (24) : 6718 6725.
  • 6LIN B, QIU L, QIU B, et al. A soluble and conductive polyflu- orene ionomer with pendant imidazolium groups for alkaline fuel cell applications [ J ]. Macromolecules, 2011, 44 ( 24 ): 9642-9649.
  • 7GU S, CAI R, LUO T, et al. A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells [J]. Angew Chem Int Ed, 2009, 48 (35): 6499-6502.
  • 8WANG J, LI S, ZHANG S. Novel hydroxide-conducting poly- electrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell ap- plications [J]. Macromolecules, 2010, 43 (8): 3890-3896.
  • 9邢丹敏,刘富强,于景荣,衣宝廉,张华民.磺化聚砜膜的燃料电池性能初步研究[J].膜科学与技术,2002,22(5):12-16. 被引量:10
  • 10LEE C H, PARK H B, LEE Y M, et al. Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application [J]. Industrial Engineering Chemistry Re- search, 2005, 44 (20): 7617-7626.

二级参考文献30

  • 1蔡年生.质子交换膜在燃料电池中的应用[J].膜科学与技术,1996,16(4):1-6. 被引量:13
  • 2Li Q F,Electrochimica Acta,2000年,45卷,4219页
  • 3Doyle M,J Electrochem Soc,2000年,147卷,34页
  • 4Li Q F,The proceeding of the 13th world hydrogen energy conference,2000年,723页
  • 5Huang Z,The Researchand Applicationsof Proton Exchange Membrane Fuel Cells,2000年
  • 6Guo Q,J Membr Sci,1999年,154卷,175页
  • 7Xing B,J New Matfor Electrochem Systems,1999年,2卷,95页
  • 8Lo Nostro P,J Phys Chem B,1999年,103卷,5347页
  • 9Wang H,J Electrochem Soc,1998年,145卷,780页
  • 10Yi B L,电源技术,1998年,22卷,5期,216页

共引文献36

同被引文献16

  • 1STEELE B C H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414: 345.
  • 2HICKNER M A, GHASSEMI H, KIM Y S, et al. Alternative Polymer Systems for Proton Exchange Membranes(PEMs)[J]. Chemical Reviews, 2004, 104: 4587-4611.
  • 3JONES D J, ROZIèRE J. Advances in the development of inorganic-organic membranes for fuel cell applications[J]. Fuel Cells I, 2008, 215: 219-264.
  • 4WU D, XU T W, WU L, et al. Hybrid acid-base polymer membranes prepared for application in fuel cells[J]. Journal of Power Sources, 2009, 186: 286-292.
  • 5PARK Y S, HATAE T, ITOH H, et al. High proton-conducting Nafion/calcium hydroxyphosphate composite membranes for fuel cells[J]. Electrochimica Acta, 2004, 50: 595-599.
  • 6ZHANG Y, CUI Z, LIU C, et al. Implantation of Nafion ionomer into polyvinyl alcohol/chitosan composites to form novel proton-conducting membranes for direct methanol fuel cells[J]. Journal of Power Sources, 2009, 194: 730-736.
  • 7HOGARTH W, COSTA J, DRENNAN J, et al. Proton conductivity of mesoporous sol-gel zirconium phosphates for fuel cell applications[J]. Journal of Materials Chemistry, 2005, 15: 754-758.
  • 8ARBIZZANI C, DONNADIO A, PICA M, et al. Methanol permeability and performance of Nafion-zirconium phosphate composite membranes in active and passive direct methanol fuel cells[J]. Journal of Power Sources, 2010, 195: 7751-7756.
  • 9YANG C, SRINIVASAN S, BOCARSLY A B, et al. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes[J]. Journal of Membrane Science, 2004, 237: 145.
  • 10LIN H L, CHANG T J. Preparation of Nafion/PTFE/Zr(HPO4)2 composite membranes by direct impregnation method[J]. Journal of Membrane Science, 2008, 325: 880-886.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部