期刊文献+

基于模糊C-means的多视角聚类算法 被引量:2

Multi-view clustering algorithm based on fuzzy C-means
下载PDF
导出
摘要 目前多数多视角聚类算法属于"刚性"划分算法,不适用于处理具有聚簇重叠结构的数据集,为此,提出一种基于模糊C-means的多视角聚类算法(简称FCM-MVC),该算法利用隶属度描述对象与类别的关系,能够更真实地描述具有聚簇重叠结构数据集的聚类结果。FCM-MVC算法同时利用多个视角信息,自动计算每个视角的权重。研究结果表明:FCM-MVC算法能够有效处理具有聚簇重叠结构的数据集;与已有的3种经典的多视角聚类算法相比,该算法获得的聚类精度更高。 Considering that most exiting multi-view clustering algorithms focusing on hard-partition clustering methods, which are not suitable for analyzing dataset with overlapping clusters, a multi-view clustering algorithm based on fuzzy C-means (FCM-MVC) was developed. The membership degree was used to describe the relation between objects and clusters, so FCM-MVC algorithm could more truely describe clustering results of dataset with overlapping clusters. FCM-MVC algorithm simultaneously incorporated fearture information in multi-view space and automatically computes weight of each view. The results show that FCM-MVC can analyze overlapping clusters effectively and the precision of clustering results of FCM-MVC are superior to the three representative algorithms.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期2128-2133,共6页 Journal of Central South University:Science and Technology
基金 国家科技支撑计划项目(2012BAH08B02) 哈尔滨工程大学中央高校基本科研业务专项资金资助项目(HEUCFZ1212 HEUCF100603)~~
关键词 多视角聚类 模糊C-means 数据挖掘 multi-view clustering fuzzy C-means data mining
  • 相关文献

参考文献22

  • 1LIU Xinhai, Glinzel W, de Moor B. Hybrid clustering of multi-view data via Tucker-2 model and its application[J]. Scientometrics, 2011, 88(3): 819-839.
  • 2WANG Xiang, QIAN Buyue, YE Jieping, et al. Multi-objective multi-view spectral clustering via pareto optimization[C]//Proc of the 13th SIAM International Conference on Data Mining. Philadelphia: SIAM, 2013: 234-242.
  • 3LONG Bo, YU P S, ZHANG Zhongfei. A general model for multiple view unsupervised learning[CJ//Proc of the 8th SIAM International Conference on Data Mining. Philadelphia: SIAM, 2008: 822-833.
  • 4Kumar A, Hal Daum6 IIL A co-training approach for multi-view spectral clustering[C]//Proc of the 28th IEEE International Conference on Machine Learning. NJ: IEEE, 201 l: 393-400.
  • 5Kumar A, Rai P, Hal Daum6 III. Co-regularized multi-view spectral clustering[C]//Proc of the 24th Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2011: 1413-1421.
  • 6CHEN Xiaojun, XU Xiaofei, HUANG Joshua, et al. TW-k-means: Automated two-level variable weighting clustering algorithm for multiview data[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(4): 932-944.
  • 7Blaschko M B, Lampert C H. Correlational spectral clustering[C]//Proc of the 21st IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8.
  • 8Chaudhuri K, Kakade S, Livescu K, et al. Multiview clustering via canonical correlation analysis[C]//Proc of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 129-136.
  • 9LIU Jialu, WANG Chi, GAO Jing, et al. Multi-view clustering via oint nonnegative matrix factorization[C]//Proc of the 13th SIAM International Conference on Data Mining. Piscataway: IEEE, 2013: 252-260.
  • 10Tzortzis G, Likas A. Kernel-based weighted multi-view clustering[C]//Proc of the 12th IEEE international conference on Data Mining. Piscataway: IEEE, 2012: 675-684.

二级参考文献21

  • 1Wu Y, Chang E Y, Chang K C C, Smith J R. Optimal multimodal fusion for multimedia data analysis. In: Pro- ceedings of the 12th Annual ACM International Conference on Multimedia. New York, USA: ACM, 2004. 572-579.
  • 2Jiang T, Tan A H. Learning image-text associations. IEEE Transactions Knowledge and Data Engineering, 2009, 21 (2): 161-177.
  • 3Zhu X J. Semi-supervised learning literature survey. Com- puter Sciences TR 1530, University of Wisconsin - Madison, USA, 2008, 1-60.
  • 4Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In: Proceedings of the llth Annual Con- ference on Computational Learning Theory. Madison, Wis- consin, USA: ACM, 1998. 92-100.
  • 5Zhang M L, Zhou Z H. CoTrade: confident co-training with data editing. IEEE Transactions on Systems, Man, and Cy- bernetics - Part B: Cybernetics, 2011, 41(6): 1612-1626.
  • 6Yan R, Naphade M. Semi-supervised cross feature learning for semantic concept detection in videos. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 657-663.
  • 7Gupta S, Kim J, Grauman K, Mooney R. Watch, listen & learn: co-training on captioned images and videos. Lecture Notes in Computer Science, 2008, 5211:457-472.
  • 8Kumar A, Daum6 HIII. A co-training approach for multi- view spectral clustering. In: Proceedings of the 2011 Inter- national Conference on Machine Learning. Bellevue, Wash- ington, USA: ACM, 2011. 393-400.
  • 9Belkin M, Matveeva I, Niyogi P. Regularization and semi- supervised learning on large graphs. In: Proceedings of the 2004 International Conference on Computational Learning Theory. Banff, Canada: ACM, 2004. 624-638.
  • 10Goldman S A, Zhou Y. Enhancing supervised learning with unlabeled data. In: Proceedings of the 17th International Conference on Machine Learning. Stanford, USA: ACM, 2000. 327-334.

共引文献2

同被引文献18

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部