期刊文献+

基于窄带电力噪声干扰的OFDM分组检测算法 被引量:1

Packet detection algorithm of OFDM with narrow-band power line noise interference
下载PDF
导出
摘要 针对电力噪声和正交频分复用(orthogonal frequency division multiplexing,OFDM)信号的特点,为提高检测的准确度同时减少数据冗余,基于含噪信号本元分析,分解干净信号和电力噪声特征向量,根据噪声和信号空间能量的不同,利用本元滤波的方法检测数据分组的起点。在电力噪声和基于G3方案的OFDM模型下,通过对经典延时相关检测算法和本元滤波检测算法进行性能评测比较,结果显示在不同信噪比下,本元滤波检测算法对接收信号的起点检测更准确,相应系统的误码率得到降低。 Considering the characteristics of power line noise and orthogonal frequency division multiplexing (OFDM) signal, a principal component analysis (PCA) was proposed for improving the accuracy of detection. This algorithm decomposes noisy signal into its principal components along the axes of a vector space of clean speech. To obtain the packet detection, the principle component filter was used: Through the evaluation to classic delay-and-correlate algorithm and the principle component filter algorithm for packet detection were compared. The results show that the principle component filter algorithm is more accurate for the OFDM signal detection, therefore, the algorithm can decrease the bit error rate (BER) of the system effectively.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第7期2510-2516,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(61172089) 高等学校博士学科专项科研基金资助项目(20120161120012) 湖南省科技计划项目(2014WK3001)~~
关键词 电力线通信 正交频分复用 本元分析 power line communication orthogonal frequency division multiplexing principal component analysis
  • 相关文献

参考文献19

  • 1Mark S T. A aynergistic approach to implement demand response asset management and service reliability using smart metering, AMI and MDM systems[C]// The 2009 IEEE PES General Meeting Advance Program of Technical Sessions and Committee Meetings. Alberta, Canada, 2009: 1-4.
  • 2Fang X, Misra S, Xue G et al. Smart grid-the new and improved power grid: A survey[J]. IEEE Communication Surveys Tutorials. 2012, 14(4): 944-980.
  • 3IEEE 1901.2, IEEE Standard for low-frequency (less than 500 kHz) narrowband power line communications for smart grid applications[S].
  • 4ITU-T G.9960, TU-T G.9961 transceivers for smart grid applications: advanced metering infrastructure, energy management in the home and electric vehicles[S].
  • 5Javier M, Sadot A, Rodriguez-Morcillo C. Performance evaluation of two narrowband PLC systems: PRIME and G3[J]. Computer Standards & Interfaces, 2013, 36(1): 198-208.
  • 6IEC 61334-5-1, Distribution automation using distribution line carrier systems Part 5-1: Lower layer profiles-The spread frequency shift keying (S-FSK) profile[S].
  • 7Cooper D. Low-data-rate narrow-band power-line communication on the European domestic mains: Symbol timing estimation[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 111-118.
  • 8Gotz M, Rapp M, Dostert K. Power line channel characteristics and their .effect on communication system design[J]. IEEE Communications Magazine, 2004, 42(4): 78-86.
  • 9Andreadou N, Pavlidou F N. Modeling the noise on the OFDM power-line communication system[J]. IEEE Transactions on Power Delivery, 2010, 25(1): 150-157.
  • 10Zimmermann M, Dostert K. A multipath model for the power line channel[J]. IEEE Transactions on Communications, 2002, 50(4): 555-559.

二级参考文献34

  • 1陈振洲,李磊,姚正安.基于SVM的特征加权KNN算法[J].中山大学学报(自然科学版),2005,44(1):17-20. 被引量:52
  • 2罗春风,程时杰,熊兰,文劲宇,张有兵,杨慧敏.低压电力线OFDM载波通信系统符号定时同步方法[J].电力系统自动化,2005,29(9):65-71. 被引量:12
  • 3孙鑫,刘兵,刘本永.基于分块PCA的人脸识别[J].计算机工程与应用,2005,41(27):80-82. 被引量:14
  • 4Miller E J, Dang X Z, Yu E T, et al. Trap characterization by gate- drain conductance and capacitance dispersion studies of an AlGaN/GaN heterostructure field- effect transistor[J]. J Appl Phys, 2000, 87:8070- 8073.
  • 5Khan M A, Hu X, Simin G, et al. AlGaN/GaN metal- oxide- semiconductor heterostructure field- effect transis- tors on SiC substrates[J]. Appl Phys Lett, 2000, 77: 1339- 1341.
  • 6Kirby M, Sirovich L. Application of the Karhunen-Loeve procedure for the characterization of human faces[J]. IEEE Transaction on Pattern Analysis and Mechine Intelligence, 1990, 12(1): 103-108.
  • 7Turk M, Pentland A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 8LU Guifu, ZOU Jian, WANG Yong. Incremental complete LDA for face recognition[J]. Pattern Recognition, 2012, 45(7): 2510-2521.
  • 9Zhao W, Chellappa R, Phillips E et al. Face recognition: A literature survey[J]. Association for Computing Machinery Computing Surveys, 2003, 35(4): 399-458.
  • 10Mandal T. A new approach to face recognition using curvelet transformation[D]. Canada: University of Windsor. Department of Electrical and Computer Engineering, 2008: 30-62.

共引文献14

同被引文献10

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部