期刊文献+

生物质燃气预混层流燃烧特性的实验研究 被引量:2

Experimental study on the premixed the laminar combustion characteristics of biogas
下载PDF
导出
摘要 在密闭燃烧容器中对常温、常压环境下的生物质燃气预混层流燃烧特性进行了实验研究,研究了不同燃气组分、不同当量比对生物质燃气预混层流火焰传播速度、火焰表面拉伸率和层流燃烧速度的影响规律。研究结果表明:发酵法制取的生物质燃气中甲烷含量越高,其层流火焰传播速度就越快;相同尺寸的火焰锋面上拉伸率越大,层流燃烧速度则越快;随着当量比的增大,层流火焰传播速度、层流燃烧速度呈现出先增大后减小的趋势。 In this paper,The biogas premixed laminar combustion characteristics were investigated experimentally in atmospheric environment within a closed container,Study on the change law of important parameters of biogas premixed laminar combustion characteristics (the flame propagation speed, the flame surface stretching rate, the laminar burning velocity) with different components and different equivalence ratios of biogas. The resutts show that the higher content of methane gas of biogas produced by fermentation method, the laminar flame propagation speed is faster, the stretching rate is bigger on the same size flame front,and the laminar burning velocity is faster. The laminar flame propagation speed and the laminar burning velocity show a first increase and then decrease trend with the equivalence ratio increase.
出处 《可再生能源》 CAS 北大核心 2015年第8期1225-1230,共6页 Renewable Energy Resources
关键词 生物质燃气 预混层流燃烧 火焰传播速度 表面拉伸率 层流燃烧速度 biogas premixed laminar combustion flame propagation speed surface tension rate laminar burning velocity
  • 相关文献

参考文献6

二级参考文献33

  • 1王云波,倪维斗,李政,王灵梅.多联产能源系统的热经济学分析[J].煤炭转化,2005,28(4):57-61. 被引量:14
  • 2(罗马尼亚)安德烈.工业火焰的燃烧过程[M].北京:机械工业出版社,1983..
  • 3Bradley D, Hicks R A, Lawes M, et al. The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane-Air and Iso-Octane-n-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb[J].Combustion and Flame, 1998, 115(1/2): 126-144.
  • 4Yamaoka I, Tsuji H. Extinction of Near-Stoichiometric Flames Diluted with Nitrogen in a Stagnation Flow [ J ]. Symposium (International) on Combustion, 1989, 22 ( 1 ) : 1565-1572.
  • 5Yu G, Law C K, Wu C K. Laminar Flame Speeds of Hydrocarbon + Air Mixtures with Hydrogen Addition[ J]. Combustion and Flame, 1986, 63 (3) : 339-347.
  • 6Van Maaren A, Thung D S, Goey L P H. Measurement of Flame Temperature and Adiabatic Burning Velocity of Methane/Air Mixtures[J]. Combustion Science and Technology, 1994, 96(4/6): 327-344.
  • 7Gu X J, Haq M Z, Lawes M, et al. Laminar Burning Velocity and Markstein Lengths of Methane-Air Mixtures [ J ]. Combustion and Flame, 2000, 121 (1/2) : 41-58.
  • 8Lamoureux N, Djebayli-Chaumeix N, Paillard C E. Laminar Flame Velocity Determination for H2-Air-He-CO2 Mixtures Using the Spherical Bomb Method [ J ]. Experimental Thermal and Fluid Science, 2003, 27(4) : 385-393.
  • 9Bradley D, Gaskell P H, Gu X J. Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames : A Computational Study [J]. Combustion and Flame, 1996, 104(1/2) : 176-198.
  • 10Manton J, Von Elbe G, Lewis B. Burning-Velocity Measurements in a Spherical Vessel with Central Ignition [ J ]. Symposium (International) on Combustion, 1953, 4 ( 1 ) : 358-363.

共引文献466

同被引文献12

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部