期刊文献+

基于组合导航与EKPF飞行器的地形边界与面积估计 被引量:2

Estimation of Boundary and Area Using Aircraft with Integrated Navigation and EKPF
下载PDF
导出
摘要 提出了一种使用四旋翼飞行器作为测量平台的地形边界与面积估计算法.该算法采用紧耦合闭环组合导航系统(捷联惯性导航系统与全球卫星定位系统)获取待测地形边界点的定位数据,分别使用Pauta准则与扩展卡尔曼粒子滤波方法剔除异常数据与处理定位数据.算法在得到的最终定位数据的基础上,估算待测地形与面积.飞行器使用前视和下视摄像头确定飞行方向和选择边界点.使用该算法可以实现不规则的凸多边形、凹多边形和弧段等地形的精确估计,估计误差可以在±1.2%以内.实际飞行实验结果验证了该算法的可行性和准确性. An algorithm was proposed to estimate the boundary and area of terrains with the quadrotor aircraft as the measuring instrument. The tightly coupled closed-loop integrated navigation system (strap-down inertial navigation system and global positioning system) was used to collect the positioning data. The Pauta criterion and EKPF (extended Kalman particle filter) were used to exclude the anomalous positioning data and dispose the remaining positioning data respectively. The boundary and area were estimated using the proposed algorithm based on the final positioning data. The front facing and bottom facing cameras of the aircraft were used to determine the flight direction and select the boundary points. This algorithm could be used to estimate irregular convex polygons, concave polygons and segmental arcs. The estimation error was limited within ±1.2%. The actual flight test results indicated the feasibility and accuracy of the proposed algorithm.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第8期1069-1073,共5页 Journal of Northeastern University(Natural Science)
基金 辽宁省高校创新团队项目(LT2014006) 国家自然科学基金资助项目(51405073 61071057)
关键词 四旋翼飞行器 组合导航 边界与面积估计 Pauta准则 扩展卡尔曼粒子滤波 quadrotor aircraft integrated navigation boundary and area estimation Pautacriterion extended Kalman particle filter
  • 相关文献

参考文献11

  • 1de Marina H G,Pereda F J,Giron-Sierra J M,et al.UAV attitude estimation using unscented Kalman filter and TRIAD[J].IEEE Transactions on Industrial Electronics,2012,59(11):4465-4474.
  • 2Brown R G,Hwang P Y C.Introduction to random signals and applied Kalman filtering[M].New York:John Wiley & Sons,1992.
  • 3Jwo D J,Yang C F,Chuang C H,et al.A novel design for the ultra-tightly coupled GPS/INS navigation system[J].Journal of Navigation,2012,65(4):717-747.
  • 4Li Y,Efatmaneshnik M,Dempster A G.Attitude determination by integration of MEMS inertial sensors and GPS for autonomous agriculture applications[J].GPS Solutions,2012,16(1):41-52.
  • 5Wang W,Liu Z,Xie R.Quadratic extended Kalman filter approach for GPS/INS integration[J].Aerospace Science and Technology,2006,10(8):709-713.
  • 6韩厚增,王坚,李增科,王志杰.基于EKPF的GPS导航模型研究[J].大地测量与地球动力学,2013,33(2):139-142. 被引量:2
  • 7吴平,雷虎民,邵雷.捷联惯性导航系统加速度计误差建模与标定补偿[J].弹箭与制导学报,2010,30(5):5-8. 被引量:4
  • 8Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for filtering nonlinear systems[C]// Proceedings of the 1995 American Control Conference.Seattle,1995:1628-1632.
  • 9Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].Radar and Signal Processing,1993,140(2):107-113.
  • 10Rigatos G G.Nonlinear Kalman filters and particle filters for integrated navigation of unmanned aerial vehicles[J].Robotics and Autonomous Systems,2012,60(7):978-995.

二级参考文献23

共引文献18

同被引文献7

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部