期刊文献+

一种基于聚类分析的3MAD-MMMD过失误差侦破方法 被引量:1

Detection of Gross Error Using 3MAD-MMMD Based on Cluster Analysis
下载PDF
导出
摘要 软测量建模时所使用的数据集中若含有过失误差,将在很大程度上影响所建模型的精确度.因此,在建模之前,针对建模所使用的数据集,提出了基于聚类分析的集成3MAD-MMMD过失误差的侦破方法.在采集无缝钢管穿孔过程中不同变量不同时刻的数据后,将其排列成数据矩阵.首先运用3MAD算法剔除其中的单变量大误差得到新的数据矩阵,之后采用欧氏距离公式求得新矩阵中同一变量的数据到其最近点的距离,最后以所有变量最近距离的中位值dmed为检测标准,对新的数据矩阵进行过失误差侦破处理.实验和仿真图表明,3MAD-MMMD侦破方法有效地剔除了采集数据中的过失误差. If there exist gross errors in the soft sensor modeling data, the accuracy of the model is largely affected. Therefore, for the data set to be used in the modeling process, a method of gross error detection of 3MAD-MMMD based on cluster analysis is proposed to process the data before modeling. The data of different variables in different time from the seamless pipe perforation process is collected. Then these data are arranged into a matrix. The 3MAD algorithm is used first to eliminate the large error of single-variables to get the new data matrix. Based on the Euclidean distance formula, the distance is then obtained from the data in matrix to another which is closest to it of the same variable. Finally, dined, the median value of all variables' closest distance, is treated as testing standards to detect gross error of new data matrix. It can be seen from the experimental and simulation results that the gross errors in the collected data sets are effectively eliminated in the 3MAD-MMMD detection method.
作者 肖冬 包晶晶
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第8期1089-1092,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61203214) 辽宁省教育厅科学研究一般项目(L2013101)
关键词 软测量建模 过失误差 聚类分析 3MAD MMMD soft sensor modeling gross error cluster analysis 3 median absolute deviation modified median minimum distance
  • 相关文献

参考文献2

二级参考文献24

  • 1谢佩军,计时鸣,张利.VC++与MATLAB混合编程的探讨[J].计算机应用与软件,2006,23(2):128-130. 被引量:26
  • 2许东 吴铮.基于MATLAB6,X的系统分析与设计[M].西安:西安电子科技大学出版社,2002.13-18.
  • 3KENNEDY J, EBERHART R C. Particle swarm optimization[C-]//Proc of IEEE International Conference on Neural Networks, Piscataway, NJ, 1995 : 1 942-1 948.
  • 4YANG X S. Nature-inspired metaheuristic algorithms[M]. Londom: Luniver Press, 2008.
  • 5YANG X S. Firefly algorithms for multimodal optimization[C]. 5th Symposium on Stochastic Algorithms, Foundation and Applications (SAGA 2009)LNCS, 5792,2009 : 169-178.
  • 6YANG X S, DEB S. Cuckoo search via L6vy flights[C]//Proc of World Congress on Nature ~ Biologically Inspired Computing (NaBic 2009), IEEE Publications, USA, 2009 : 210-214.
  • 7YANG X S,DEB S. Engineering optimization by cuckoo search[J]. Int J Math Modelling Num Optimisation, 2010,1 (4) :330-343.
  • 8YANG X S. A new metaheuristic bat-inspired algorithm[C]//Nature-lnspired Cooperative Strategies for Optimization (NICSO 2010), Springer,SCI,2010,284 .. 65-74.
  • 9DORIGO M, Sttitle T. Ant colony optimization[M]. Massachusetts~ MIT Press, 2004.
  • 10GANDOMI A H,YANG X S, ALAVI A H. Mixed variable structural optimization using firefly algorithm[J]. Comput- ers and Structures,2011,89(23/24) :2 325-2 336.

共引文献28

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部