期刊文献+

挤压态Mg-1.2Zn-0.8Y合金组织及高应变速率下的力学行为

Microstructure and Mechanical Behavior at High Strain Rates of As-extruded Mg-1.2Zn-0.8Y Alloy
下载PDF
导出
摘要 通过显微组织观察、X射线及电子衍射结构分析对挤压态Mg98Zn1.2Y0.8合金的第二相结构及分布,以及Mg基固溶体组织形态进行了研究,并对其100/s^667/s应变速率下的力学行为及断裂机制进行了分析.结果表明:Mg98Zn1.2Y0.8合金在300℃、挤压比为16的热挤压过程中发生了完全的动态再结晶;挤压态组织为晶粒细小的镁基固溶体、其上弥散分布的化合物H相,以及沿晶界分布的Z相.室温下随着应变速率从100/s提高到667/s,挤压态Mg98Zn1.2Y0.8合金的屈服强度及抗拉强度明显升高,延伸率也从9.2%提高到13%.室温下应变速率为100/s^667/s时挤压态M g98Zn1.2Y0.8合金的拉伸断裂方式是以韧性断裂为主并伴有脆性断裂的混合断裂. The structure of compounds and the microstructure of as-extruded Mg98Zn1.2Y0.8 alloy were investigated through OM, SEM, TEM and XRD. The dynamic behavior at high strain rate conditions of as-extruded Mg98 Znl.2 Y0. 8 alloy was also researched through the tensile test and fracture surface observation. The results show that the Complete dynamic recrystallization occurs in the Mg98Zn1.2Y0.8 alloy during extruding process at a temperature of 300 ℃ and a reduction ratio of 16: 1. The fine particles of compound H-phase dispersively distribute in the Mg-based solid solution with fine grain size, and the particles of Z-phase mainly distribute along the grain boundaries. At room temperature, the yield strength and the tensile strength rise with the increase of strain rates from 100/s to 667 /s, and the elongation also increases from 9.2% to 13%. Ductile fracture with some proportion of brittleness fracture occurs in the as-extruded Mg98Zn1.2Y0.8 alloy at room temperature and strain rate 100/s - 667/s.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第8期1102-1105,1109,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51271053) 辽宁省自然科学基金资助项目(201202068)
关键词 MG-ZN-Y合金 组织形态 高应变速率 力学行为 断裂方式 Mg-Zn-Y alloy microstructure high strain rate mechanical behavior fracture mode
  • 相关文献

参考文献16

  • 1Kimberley W.Lighter weight leads to fuel savings [J].Automotive Engineer,2004,29(9):30-31.
  • 2Schumann S,Friedrich H.Current and further use of magnesium in the automobile industry [J].Materials Science Forum,2003,419/420/421/422:51-56.
  • 3Mordike B L,Ebert T.Magnesium properties-applications-potential [J].Materials Science and Engineering:A,2001,302:37-45.
  • 4Z. Yang,J.P. Li,J.X. Zhang,G.W. Lorimer,J. Robson.REVIEW ON RESEARCH AND DEVELOPMENT OF MAGNESIUM ALLOYS[J].Acta Metallurgica Sinica(English Letters),2008,21(5):313-328. 被引量:99
  • 5Gao X,Nie J F.Characterization of strengthening precipitate phases in a Mg-Zn alloy [J].Scripta Materialia,2007,56:645-648.
  • 6Maeng D Y,Kim T S,Lee J H,et al.Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys [J].Scripta Materialia,2000,43:385-389.
  • 7Grobner J,Kozlov A,Fang X Y,et al.Phase equilibria and transformations in ternary Mg-rich Mg-Y-Zn alloys [J].Acta Materialia,2012,60:5948-5962.
  • 8Tsai A P, Murakami Y, Niikura A. The Zn-Mg-Y phase diagram involving quasicrystals [ J ]. Philosophical Magazine :A,2000,80 (5) : 1043 - 1054.
  • 9Singh N K, Cadoni E, Singha M K, et al. Dynamic tensile behavior of multi phase high yield strength steel [ J ]. Materials and Design ,2011,32:5091 - 5098.
  • 10Boyce B L, Dilmore M F. The dynamic tensile behavior of tough,ulwahigh-strength steels at strain-rates from 0. 000 2 s^- 1 to 200 s^- 1 [ J ]. International Journal of Impact Engineering, 2009,36:263 - 271.

二级参考文献29

共引文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部