期刊文献+

隐式功能函数结构体可靠性拓扑优化 被引量:2

Reliability-based Topology Optimization of Implicit Performance Function Structure
下载PDF
导出
摘要 考虑工程实际中外载荷、材料属性等的随机不确定性对结构安全性的影响,研究了具有结构位移可靠性约束的拓扑优化设计。建立以柔度最小为目标、以单元相对密度为变量、具有材料体积分数约束和结构位移可靠性约束的拓扑优化数学模型;针对运用有限元数值计算方法时结构功能函数为隐式的情况,运用响应面法近似逼近结构真实的功能函数;利用简便高效的一次二阶矩法计算结构位移可靠度;采用内循环为确定性的拓扑优化、外循环控制结构材料体积分数的策略对连续体结构进行可靠性拓扑优化设计。通过两个算例与确定性拓扑优化结果进行比较,结果表明所提设计方法是高效可行的。 Considering the impacts of uncertain factors such as external loading, material property etc. on structural safety in engineering practice, the topology optimization design with the structural displacement reliability constrain was discussed. A mathematical of topology optimization was devel- oped, where the minimization of compliance was taken as objective function, the relative densities of el ements were taken as design variables, the material volume fraction and structural displacement relia-bility were taken as constraints. The response surface method was implemented to approximately ap proach its real performance function, for the situation that the structural performance function was implicit by using finite element numerical method. Then, the simple and efficient first order second moment method was used to obtain the structural displacement reliability. The strategy that inner loop was the deterministic topology optimization and the outer loop was to control the material volume fraction was implemented to carry out the reliability-based topology optimization of continuum structure. Finally, two numerical examples were given to be compared with the results of deterministic topology optimization showing that the design method is efficient and feasible.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2015年第16期2203-2208,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51275221) 江苏省产学研联合创新资金资助项目(BY2014038-04)
关键词 可靠性 拓扑优化 隐式功能函数 响应面法 reliability topology optimization implicit performance function response surfacemethod
  • 相关文献

参考文献16

  • 1Bendsoe M P, Kikuchi N. Generating Optimal To- pologies in Structural Design Using a Homogeniza- tion Method[J]. Computer Methods in Applied Me- chanics and Engineering, 1988,71 ( 1 ) : 197-224.
  • 2Bendsoe M P, Sigmund O. Material Interpolation Schemes in Topology Optimization[J]. Archive of Applied Mechanics, 1999,69(9) : 635-654.
  • 3Xie Y M,Steven G P. A Simple Evolutionary Proce- dure for Structural Optimization[J]. Computers and Structures, 1993,49 ( 5 ) : 885-896.
  • 4Querin O M, Yong V,Steven G P,et at. Computa- tional Efficiency and Validation of Bi-directional Ev- olutionary Structural Optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2001,189(2) :559-573.
  • 5Sethian J A,Wiegmann A. Structural Boundary De- sign via Level Set and Immersed Interface Methods[J]. Journal for Numerical Method in Engineering, 2003,57(8) :1177-1196.
  • 6刘国梁,陈建军,马洪波.一种基于非概率可靠性的结构水平集拓扑优化[J].工程力学,2012,29(6):58-62. 被引量:13
  • 7Kharmanda G, Olhohoff N, Mohamed A, et al. Reli- ability- based Topology Optimization[J]. Structural and Multidisciplinary Optimization, 2004, 26 ( 5 ) : 295-307.
  • 8邝泳聪,欧阳高飞,张宪民.基于可靠性的连续体结构拓扑优化设计[J].机械强度,2009,31(4):604-608. 被引量:10
  • 9Kwang S Y, Eom Y S, Park J Y, et al. Reliability- based Topology Optimization Using Successive Standard Response Surface Method[J]. Finite Ele- ment in Analysis and Design,2011,47(7):843-849.
  • 10Kwang S Y,Yong S E,Jae Y P,et al. Reliability- based Topology Optimization Using a Standard Response Surface Method for Three-dimensional Structures [J]. Structural and Muhidisciplinary Optimization,2011,43(2) :287-295.

二级参考文献40

  • 1张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:99
  • 2Zuo Kongtian,ZhaoYudong,Chen Liping,Zhong Yifang,Huang Yuying.NEW HMM ALGORITHM FOR TOPOLOGY OPTIMIZATION[J].Chinese Journal of Mechanical Engineering,2005,18(3):346-350. 被引量:4
  • 3张文明,孟光.MEMS可靠性与失效分析[J].机械强度,2005,27(6):855-859. 被引量:22
  • 4荣见华.一种改进的结构拓扑优化水平集方法[J].力学学报,2007,39(2):253-260. 被引量:17
  • 5SchueUer G I. Computational stochastic structural mechanics and analysis as well as structural reliability [ J ]. Computer Methods in Applied Mechanics and Engineering, 2005(Supplementary issus) : 213-224.
  • 6Allen M, Maute K. Reliabihty-based shape optimization of structures undergoing fluid-structure interaction phenomena[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 3472-3495.
  • 7Stocki R, Kolaneck K, Jendo S, Kleiber M. Study on discrete optimization techniques in reliability-based optimization of truss structures [ J]. Computers and Structures, 2001, 79: 2235-2247.
  • 8Papadrakakis M, Lagaros N D. Reliability-based structural optimization using neural networks and Monte Carlo simulation[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(32): 3491-3507.
  • 9Maute K, Frangopol D M. Reliability-based design of MEMS mechanisms by topology optimization[J]. Computers and Structures, 2003, 81 : 813- 824.
  • 10Gaofei O, Xianmin Z. Research on fast initialization for the level set method[C]//Proceedings of the IEEE International Conference on Intelligent Control and Automation. Dalian, China: [s. n. ], 2006: 9935- 9939.

共引文献25

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部