期刊文献+

载体表面性质对活性相形貌结构及植物油加氢脱氧选择性的影响 被引量:4

Effects of Surface Characteristics of Support on Morphology of Active Phase and Selectivity of Hydrodeoxygenation Reaction
下载PDF
导出
摘要 分别以未改性氧化铝(A)、K改性氧化铝(A-K)和Si改性氧化铝(A-Si)为载体,采用饱和浸渍法制备了RZ、RZ-K和RZ-Si 3个NiMo催化剂,并采用Py-IR、XRD、BET、XRF、HRTEM、XPS等技术对其进行了表征。在中型固定床反应器中,以棕榈油为原料,考察了载体表面性质对硫化态催化剂活性及加氢直接脱氧、加氢脱羧基和加氢脱羰基路径选择性的影响。结果表明,A-Si、A、A-K载体表面总酸量和强酸量依次降低;载体表面性质对硫化态(Ni)MoS2活性相形貌结构有较大影响,虽然3个催化剂Mo硫化度相当,但RZ-K的片晶长度较短,层数较低,而RZ-Si片晶长度较长,层数较高,且NiMoS活性相中Ni占总Ni的比(n(NiNiMoS)/n(Nitotal))按RZ-Si、RZ、RZ-K顺序依次降低。3个催化剂加氢脱羰基活性相当(320~380℃),但加氢直接脱氧和加氢脱羧基活性不同。适当提高催化剂酸性,增加反应温度和压力对提高加氢脱羧基路径选择性有利;适当降低催化剂酸性和减小活性相晶片,降低反应温度和提高压力对提高加氢直接脱氧路径选择性有利。Si改性导致载体酸性的增强以及相应催化剂Ni-Mo-S活性位的增多,促进了加氢脱羧基反应,与RZ和RZ-K催化剂相比,催化剂RZ-Si的整体脱氧活性提升。 The Ni-Mo catalysts RZ-K, RZ and RZ-Si supported, respectively, on K modified Al2O3 (A-K), A1203 (A) and Si modified Al2O3 (A-Si) were prepared by incipient-wetness impregnation, and characterized by Py-IR, XRD, BET, XRF, HRTEM and XPS techniques. The catalytic hydrodeoxygenation reaction (HDO) of palm oil was carried out in a fixed-bed reactor to investigate the properties of support surface on the catalytic activity of these catalysts and on the selectivities of direct hydrodeoxygenation, hydrodecarboxylation and hydrodecarbonylation paths. The results showed that the amount of total acid sites and strong acid sites of A-Si, A, A-K decreased in turn. Surface properties of the supports had great influence on the mophology of sulfided active phase (Ni)MoS2, although the degrees of Mo sulfidation of three catalysts were equivalent. In comparison with RZ catalyst, RZ-K catalyst was of shorter average slab length and lower stacking number, RZ-Si catalyst was of longer average slab length and higher stacking number. Morover, n (NiN2MoS)/n (Nitotal) values of RZ-Si, RZ, RZ-K decreased in turn. Besides, the hydrodecarbonylation path selectivities at 320-- 380℃ were similar over the three catalysts, but direct hydrodeoxygenation and hydrodecarboxylation path selectivities were different. Increasing the acidity of catalyst and increasing reaction temperature and pressure will favor hydrodecarboxylation reaction, while decreasing the acidity and n (NiNiMoS)/n(Nitotal) of catalyst and lowering reaction temperature and increasing reaction pressure will favor direct hydrodeoxygenation reaction. RZ-Si catalyst was of more total acid sites and strong acid sites and n(NiNiMoS)/n(Nitotal) ratio, which is the reason why RZ-Si catalyst has the highest HDO activity among the three catalysts of RZ, RZ-K and RZ-Si.
出处 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2015年第4期845-852,共8页 Acta Petrolei Sinica(Petroleum Processing Section)
基金 国家科技部科研院所技术开发研究专项资金(2012EG118270)资助
关键词 载体表面性质 活性相 加氢脱氧反应 加氢直接脱氧反应 加氢脱羧基反应 加氢脱羰基反应 surface characteristics of support active phase hydrodeoxygenation reaction direct hydrodeoxygenation hydrodecarboxylation hydrodecarbonylation
  • 相关文献

参考文献23

  • 1闵恩泽,杜泽学,胡见波.利用植物油发展生物炼油化工厂的探讨[J].科技导报,2005,23(5):15-17. 被引量:16
  • 2闵恩泽,唐忠,杜泽学,吴巍.发展我国生物柴油产业的探讨[J].中国工程科学,2005,7(4):1-4. 被引量:88
  • 3闵恩泽.利用可再生油料资源发展生物炼油化工厂[J].化工学报,2006,57(8):1739-1745. 被引量:39
  • 4赵檀,张丽,冯成江,张国甲.第二代生物柴油的研究现状与展望[J].现代化工,2011,31(5):7-10. 被引量:10
  • 5CHEN L G, ZHU Y L, ZHENG H Y, et al. Aqueous- phase hydrodeoxygenation of propanoic acid over the Ru/ZrOz and Ru-Mo/ZrOz catalysts [J]. Applied Catalysis A: General, 2012, 411-412.. 95-104.
  • 6SENOL O I, RYYMIN E M, VILJAVA T R, et al. Reaction of methyl heptanoate hydrodeoxygenation on sulphided catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2007, 268(1-2): 1-8.
  • 7JOSHI N, LAWAL A. Hydrodeoxygenation of acetic acid in a microreactor [J]. Chemical Engineering Science, 2012, 84: 761-771.
  • 8CHEN LG, ZHUYL, ZHENGH Y, etal. Aqueous phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2011, 351.. 217-227.
  • 9MASITA M, THUSHARA K H, ZAHIRA Y, et al. Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation [- J 1. Renewable and Sustainable Energy Reviews, 2013, 22: 121-132.
  • 10BAMBANG V, HAN J Y, KIM S K, et al. Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts[J]. Fuel, 2012, 94: 578-585.

二级参考文献68

共引文献151

同被引文献52

  • 1徐莹,常杰,张琦,王铁军,王晨光.固体碱催化剂上生物油催化酯化改质[J].石油化工,2006,35(7):615-618. 被引量:41
  • 2张琦,常杰,王铁军,吴创之,徐莹,朱锡锋.固体酸改质生物油的研究[J].燃料化学学报,2006,34(6):680-684. 被引量:34
  • 3Yang Z, Kumar A, Huhnke R L. Review of recent developments toimprove storage and transportation stability of bio-oil [ J ]. Renew-able & Sustainable Energy Reviews,2015 ,50 :859 - 870.
  • 4Bridgwater A V,Meier D, Radlein D. An overview of fast pyrolysisof biomass [ J ] . Organic Geochemistry,1999, 30 ( 12 ) : 1479 -1493.
  • 5Mohan D,Pittman C U,Steele P H. Pyrolysis of wood/biomass forbio-oil; A critical review [ J] . Energy Fuels,2006 ,20 ( 3 ) : 848 -889.
  • 6Asadieraghi M,Wan MAW D,Abbas H F. Model compound ap-proach to design process and select catalysts for in-situ bio-oil up-grading [J ]. Renewable & Sustainable Energy Reviews, 2014,36 :286 -303.
  • 7Czemik S,Bridgwater A V. Overview of applications of biomass fastpyrolysis oil[ J] . Energy & Fuels,2004 ,18(2) :590 -598.
  • 8Martinez J D,Veses A,Mastral A M,e/ al. Co-pyrolysis of biomasswith waste tyres : Upgrading of liquid bio-fuel [ J ]. Fuel ProcessingTechnology ,2014,119(1) :263 -271.
  • 9Soltes E J, Lin S C K, Sheu Y H E. Catalyst specificities in highpressure hydroprocessing of pyrolysis and gasification tars [ J ] .Prepr Pap, Am Chem Soc,Div Fuel Chem, 1987 ,32 :229 -239.
  • 10Shinyoung Oh, Hyewon Hwang, Hang Seok Choi, et al. The effectsof noble metal catalysts on the bio-oil quality during the hydrodeox-ygenative upgrading process[ J]. Fuel,2015,153 :535 -543.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部