期刊文献+

对有限覆盖无网格法中悬挂节点的研究 被引量:1

STUDY ON THE HAINGING NODES IN THE FINITE-COVER-BASED MESHFREE METHOD
原文传递
导出
摘要 当前基于Galerkin法的无网格法都只在域内和边界上布置节点。基于无网格方法背景网格独立于节点布置这一性质,该文探讨了无网格域外布置悬挂节点的可行性,提出了一种统一的、均匀的无网格节点布置方案,并设计了相应的背景网格方案,称为有限覆盖无网格法。通过数值算例讨论了悬挂节点对精度的影响,在此基础上讨论了悬挂节点的数目、节点影响域的形状、尺寸以及背景积分方案等对求解精度的影响,并给出了推荐的做法。算例结果表明,悬挂节点能够显著提高求解精度,尤其是边界附近的应力精度。 For the meshfree methods based on the Galerkin method, all nodes are distributed in the computational domain or on domain boundaries. This study explores the feasibility of using hanging nodes for meshfree methods as the nodal arrangement is independent of background cells. A unified and uniform strategy of the nodal arrangement is proposed, along with a corresponding scheme for the distribution of background cells. Numerical examples are employed to discuss the following influential factors: the necessity of using hanging nodes, the number of hanging nodes, the shape and size of nodal influential domain, and the background integral scheme. Results show that the proposed method can greatly improve the accuracy of meshfree methods, especially in the calculation of stresses near domain boundaries.
出处 《工程力学》 EI CSCD 北大核心 2015年第8期80-86,共7页 Engineering Mechanics
基金 国家自然科学基金项目(11172313)
关键词 无网格伽辽金法 节点布置 悬挂节点 前处理 背景积分 精度 EFG nodal arrangement hanging nodes pretreatment background integration precision
  • 相关文献

参考文献17

  • 1Lucy L B.A numerical approach to the testing of the fission hypothesis[J].The Astronomical Journal,1977,82:1013―1024.
  • 2Belytschko T,Lu Y Y,Gu L.Element-free Galerkin methods[J].International Journal for Numerical Methods in Engineering,1994,37(2):229―256.
  • 3Liu W K,Jun S,Zhang Y F.Reproducing kernel particle methods[J].International Journal for Numerical Methods in Fluids,1995,20(8/9):1081―1106.
  • 4Atluri S,Zhu T.A new meshless local Petrov-Galerkin(MLPG)approach in computational mechanics[J].Computational Mechanics,1998,22(2):117―127.
  • 5Gu Y,Chen W,Zhang C Z.Singular boundary method for solving plane strain elastostatic problems[J].International Journal of Solids and Structures,2011,48(18):2549―2556.
  • 6Fu Z J,Chen W,Yang H T.Boundary particle method for Laplace transformed time fractional diffusion equations[J].Journal of Computational Physics,2013,235:52―66.
  • 7张雄,刘岩,马上.无网格法的理论及应用[J].力学进展,2009,39(1):1-36. 被引量:136
  • 8Nguyen V,Rabczuk T,Bordas S,Duflot M.Meshless methods:A review and computer implementation aspects[J].Mathematics and Computers in Simulation,2008,79(3):763―813.
  • 9Lu H,Chen J S.Adaptive Galerkin particle method[M]//Griebel M,Schweitzer M A.Meshfree methods for paatial differential equations[J].Berlin Heidelberg:Springer,2003,251―265.
  • 10Le C V,Askes H,Gilbert M.Adaptive element-free Galerkin method applied to the limit analysis of plates[J].Computer Methods in Applied Mechanics and Engineering,2010,199(37/38/39/40):2487―2496.

二级参考文献22

  • 1PanXiaofei,SzeKimYim,ZhangXiong.AN ASSESSMENT OF THE MESHLESS WEIGHTED LEAST-SQUARE METHOD[J].Acta Mechanica Solida Sinica,2004,17(3):270-282. 被引量:3
  • 2王兆清,冯伟.自然单元法研究进展[J].力学进展,2004,34(4):437-445. 被引量:23
  • 3李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:132
  • 4ZHANG Zhi-qian(张智谦),ZHOU Jin-xiong(周进雄),WANG Xue-ming(王学明),ZHANG Yan-fen(张艳芬),ZHANG Ling(张陵).h-ADAPTIVITY ANALYSIS BASED ON MULTIPLE SCALE REPRODUCING KERNEL PARTICLE METHOD[J].Applied Mathematics and Mechanics(English Edition),2005,26(8):1064-1071. 被引量:4
  • 5Xi Zhang Zhenhan Yao Zhangfei Zhang.Application of MLPG in large deformation analysis[J].Acta Mechanica Sinica,2006,22(4):331-340. 被引量:8
  • 6Liu G R, Zhang G Y, Gu Y T. Point interpolation method based on local residual formulation using radial basis functions [J]. Structure Engineering and Mechanics, 2002, 14(6): 713--732.
  • 7Liu X, Liu G R, Tai K, Lam K Y. Radial point interpolation collocation method (RPICM) for the solution of nonlinear Poisson problems [J]. Computational Mechanics, 2005, 34(4): 296--306.
  • 8Wang J Liu G R. A point interpolation meshfree method based on radial basis functions [J]. International loumal for Numerical Methods in Engineering, 2002, 54: 1623 -- 1648.
  • 9Belytschko T, Lu Y Y, Gu L. Element free Galerkin methods [J]. International Journal of Numerical Methods in Engineering, 1994, 37: 229--256.
  • 10Liu G R, Zhang G Y, Gu Y T, et al. A meshfree radial point interpolation method (RPIM) for three-dimensional solids [J]. Computational Mechanics, 2005, 36: 421-- 430.

共引文献138

同被引文献40

  • 1李树忱,程玉民.基于单位分解法的无网格数值流形方法[J].力学学报,2004,36(4):496-500. 被引量:47
  • 2栾茂田,杨新辉,田荣,杨庆.有限覆盖无单元法在多裂纹岩体断裂特性数值分析中的应用[J].岩石力学与工程学报,2005,24(24):4403-4408. 被引量:3
  • 3黄涛,陈鹏万,张国新,杨军.岩石双孔爆破过程的流形元法模拟[J].爆炸与冲击,2006,26(5):434-440. 被引量:11
  • 4黄涛,陈鹏万,张国新,杨军.岩石Hopkinson层裂的流形元法模拟[J].高压物理学报,2006,20(4):353-358. 被引量:2
  • 5BOUCHARD P, BAY F, CHASTEL Y, et al. Crack propagation modelling using an advanced remeshing technique[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189(3): 723 -742.
  • 6BOUCHARD P, BAY F, CHASTEL Y. Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(35/36): 3 887 - 3 908.
  • 7MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131 - 150.
  • 8BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601 - 620.
  • 9FLEMING M, CHU Y, MORAN B, et al. Enriched elementTfree Galerkin methods for crack tip fields[J]. International Journal for Numerical Methods in Engineering, 1997, 40(8): 1 483 - 1 504.
  • 10VENTURA G, XU J, BELYTSCHKO T. A vector level set method and new discontinuity approximations for crack growth by EFG[J]. International Journal for Numerical Methods in Engineering, 2002, 54(6): 923 - 944.

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部