期刊文献+

基于Haar小波变换和ARIMA-RBF的天然气时负荷预测 被引量:3

Hourly Load Prediction for Natural Gas Based on Haar Wavelet Tansforming and ARIMA-RBF
下载PDF
导出
摘要 针对天然气时负荷预测问题,提出了一种基于Haar小波变换和ARIMA-RBF的天然气时负荷组合预测模型。首先,对天然气时负荷数据样本时间序列进行小波分解,采用Mallat快速算法,母小波为Haar小波,对分解出来的高频分量进行ARIMA预测,低频分量进行RBF预测;其次,对高频分量预测结果和低频分量预测结果进行Haar小波重构;最后,以某市实际采集的天然气时负荷为例进行研究,并与自组织特征映射(Self-organizing Feature Map,SOFM)网络和多层感知器(Multilayer Perceptron,MLP)网络(SOFM+MLP)组合预测模型进行对比分析。结果表明,组合预测模型较SOFM+MLP预测模型的MAPE值指标高出2.593 2%,预测精度显著提高,为实际工程的在线应用提供了有益参考。 A resultant forecast model for prediction of hourly load of natural gas is proposed based on Haar wavelet transforming and ARIMA-RBF in this paper. Firstly, adopting Mallat fast algorithm and choosing Haar wavelet as mother wavelet, the gas hour load is decomposed, then the high frequency signals are predicted with ARIMA, and the low frequency is predicted with RBF. Secondly, the high frequency and the low frequency are reconstructed by Haar wavelet. Finally, taking gas hour load of a city for example, the effectiveness of prediction model is verified and compared with SOFM+MLP. The results indicate that the MAPE of the combination forecasting model is higher than 2.593 2%, the prediction accuracy is significantly improved in this paper, which provide a new useful reference for the short-term forecasting in online engineering application.
出处 《石油化工高等学校学报》 CAS 2015年第4期75-80,共6页 Journal of Petrochemical Universities
基金 中国石油集团公司重点研究项目资助(KY2011-13)
关键词 天然气时负荷 HAAR小波变换 ARIMA RBF 预测 Gas hour load Haar wavelet transform ARIMA RBF Forecast
  • 相关文献

参考文献14

二级参考文献74

共引文献258

同被引文献36

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部