期刊文献+

紫色土坡地泥岩裂隙潜流中的胶体迁移 被引量:8

Field-scale study of colloid transport in fracture flow from a sloping farmland of purple soil
下载PDF
导出
摘要 为探求自然胶体迁移进入地下水的潜力,建立原位坡地径流观测场,研究了2013年夏季3场不同雨型降雨事件下,紫色土坡地(1 500 m2)泥岩裂隙潜流中自然胶体的迁移规律。结果表明:裂隙潜流中胶体对降雨的响应时间为30~90 min,比潜流对降雨的响应更迅速,且取决于坡地雨前干旱情况及降雨强度;胶体浓度峰早于潜流流量峰,峰值浓度相对背景浓度可增加1~2个数量级,最大雨强及雨型决定潜流流量和胶体浓度峰型。气液界面是胶体初始迁移响应的主要驱动因素,雨水混合土壤前期水对土壤介孔和大孔内壁胶体的剪切、裹携是胶体释放、分散与迁移的主要机制。因此,胶体辅助运移可能成为紫色土地区吸附性较强的污染物(如磷、疏水性农药等)的重要迁移方式。 To evaluate natural colloid transport potentials into groundwater, via fracture flow, a field-scale study was undertaken on a large sloping farmland plot ( 1 500 m2) in central Sichuan in the summer of 2013. Results indicated that colloid response times varied between 30--90 rain; this depending mainly on the preceding soil moisture content and the intensity of rainfall. Colloid flushing occurred prior to peak fracture flow; with colloid concentration peaks ap- pearing earlier than maximum discharge peaks. Peak colloid concentrations were 1--2 orders of magnitude larger than background colloid concentrations. Maximum rainfall intensity and patterns of rainfall dominated fracture flow and colloid concentration. Processes at the air-water interface are suggested to be the main driving factor controlling colloid release and transport during initial responses to rainfall. At these times, the flushing of colloids from soil mesopores and macropores surfaces, driven by the mixing of event rainwater and pre-event mobile soil water, is suggested to be the major mechanism of colloid mobilization and subsequent transport. It is submitted that colloid-facilitated transport could be a very important pathway for the migration of contaminants, particularly those that show large adsorption affinities to soil particles (e.g. phosphorus and hydrophobie pesticides) , in the vast purple soil region of Sichuan.
出处 《水科学进展》 EI CAS CSCD 北大核心 2015年第4期543-549,共7页 Advances in Water Science
基金 中国科学院"百人计划"(引进国外杰出人才)资助项目(724) 国家自然科学基金资助项目(41471268)~~
关键词 紫色土 降雨 胶体迁移 裂隙潜流 purple soil rainfall colloid transport fracture flow
  • 相关文献

参考文献28

  • 1ZHANG Wei,TANG Xiangyu,WEISBROD Noam,GUAN Zhuo.A Review of Colloid Transport in Fractured Rocks[J].Journal of Mountain Science,2012,9(6):770-787. 被引量:14
  • 2李海明,吴锦兰,贾晓玉,王博,郑西来.滨海含水介质胶体对垃圾渗滤液氨氮的吸附特征[J].水科学进展,2008,19(3):339-344. 被引量:7
  • 3VANDEVOORT A R, LIVI K J, ARAI Y. Reaction conditions control soil colloid facilitated phosphorus release in agricultural Ultisols[J]. Geoderma, 2013, 206: 101-111.
  • 4SUN W L, YIN K, YU X Q. Effect of natural aquatic colloids on Cu(11) and Pb(11) adsorption by Al2O3 nanoparticles[J]. Chemical Engineering Journal, 2013, 225: 464-473.
  • 5GOODDY D C, MATHIAS S A, HARRISON I, et al. The significance of colloids in the transport of pesticides through Chalk[J]. Science of Total Environment, 2007, 385: 262-271.
  • 6WEISBROD N, MERON H, WALKER S, et al. Virus transport in a discrete fracture[J]. Water Research, 2013, 47(5): 1888-1898.
  • 7MONDAL P K, SLEEP B E. Colloid transport in dolomite rock fractures: Effects of fracture characteristics, specific discharge, and ionic strength[J]. Environmental Science & Technology, 2012, 46(18): 9987-9994.
  • 8AOSAI D, YAMAMOTO Y, MIZUNO T, et al. Size and composition analyses of colloids in deep granitic groundwater using microfiltration/ultrafiltration while maintaining in situ hydrochemical conditions[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2014, 461: 279-286.
  • 9MAJUMDER S, NATH B, ASRKAR S, et al. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: The role of organic and inorganic colloids[J]. Science of the Total Environment, 2014, 468: 804-812.
  • 10商书波.降雨对土壤胶体释放与迁移的影响研究[J].水土保持学报,2009,23(6):199-202. 被引量:8

二级参考文献63

  • 1刘庆玲,徐绍辉.地下环境中胶体促使下的污染物运移研究进展[J].土壤,2005,37(2):129-135. 被引量:25
  • 2胡勘平.松花江水污染生态环境影响评估取得阶段性成果[J].环境保护,2006,34(02A):1-1. 被引量:1
  • 3周跃,王洁,付玉宾,曾正涛.矿区废石场覆土层垂直侵蚀特征的初步分析[J].昆明理工大学学报(理工版),2007,32(1):97-101. 被引量:4
  • 4Jonsson. Effect of hyporheic exchange on conservative and reactive solute transport in streams, www. diva - portal.org/diva/getI)ocument? umnbn-se-uu-diva - 3522 - 1--fulllext. pdf, 2003.
  • 5Packman A I, Marion A, Zaramella M, et al. Development of layered sediment structure and its effects on pore water transport and hyporheic exchange[J]. Water, Air, & Soil Pollution: Focus, 20(0, 12(6): 69- 78.
  • 6Boulton A J, Findlay S, Mannonier P, et al. The functional significance of the hyporheic zone in streams and rlvers[J]. Annual Review of Ecology and Systematics, 1998, 29:59 - 81.
  • 7Triska F J, Kennedy V C, Avanzino R J, et al. Retention and transport of nutrients in a third-order stream in northwestern California: hyporheic processes[J]. Ecology, 1989, 70:1 894- 1905.
  • 8Runkel R L, McKnight D M, Rajaram H. Modeling hyporheic zone processes [J]. Advances in Water Resources, 2003, 26(9) : 901 - 905.
  • 9Patschke S N. Hyporheic exchange in a forested headwater stream[D]. Canada: Simon Fraser University, 1999.
  • 10Precht E, Franke U, Polerecky L, et al. Oxygen dynamics in permeable sediments with wave-driven pore water exchange[J]. Limnology and Oceanography, 2004, 49(3): 693-705.

共引文献82

同被引文献79

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部