期刊文献+

基于Lukasiewicz计算模型的六值命题逻辑公理体系构建

On the System Construction of the Multi-Value Logic Axiom in Lukasiewicz-based Computation Model
下载PDF
导出
摘要 虽然经典命题逻辑在理论上已经趋于成熟,它既是可靠的又是完备的,但在现实世界中并不是每个命题均可直接用真与假来判断。很显然,对未来事件进行判断的命题既不真也不假。为了改进经典命题逻辑的这种不足,本文在深入研究经典命题逻辑的基础上,以Lukasiewicz计算模型为基础,通过扩展经典命题逻辑的逻辑真值集,并采用扩展后的逻辑真值构成的赋值格对命题进行赋值。由此本文提出六值命题逻辑系统,记为£s。系统中否定了经典命题逻辑中的排中律,增加了对命题判断的多样性,增强了它对现实世界的表达能力。 Although the classical propositional logic in theory has become mature, it is not only relia-ble and complete, but in the real world, not every proposition can be directly used to judge true and false. Obviously, the judgment of future events is neither true nor false proposition. In order to improve the short-comings of classical propositional logic, based on the in - depth study of classical propositional logic, based on the Lukasiewicz model, through the extension of classical propositional logic logic truth value set,and uses the extended logic truth value assignment of proposition in lattice structure assignment. This paper puts forward six valued propositional logic system£ s, system of negation in classical propositional logic lawof excluded middle, increase the diversity of the proposition of judgment, it enhances the ability of express- ing the real world.
作者 林加华 姜华
出处 《楚雄师范学院学报》 2015年第6期32-37,共6页 Journal of Chuxiong Normal University
基金 楚雄师范学院校级科研项目:基于Lukasiewicz计算模型的六值命题逻辑公理体系研究
关键词 经典命题逻辑 Lukasiewicz计算模型 六值命题逻辑 multi valued logic formal proof semantic constraints
  • 相关文献

参考文献4

二级参考文献7

  • 1梁彪.多值逻辑的解释问题[J].中山大学学报(社会科学版),1996,36(1):50-56. 被引量:2
  • 2李晶,杨宗源.吴方法在命题逻辑中的应用[J].华东师范大学学报(自然科学版),2006(1):80-86. 被引量:4
  • 3王元元,张桂芸.计算机科学中的离散结构[M].北京:机械工业出版社,2006.
  • 4吴尽晗.多值逻辑定理及其证明的代数方法.计算机学报,1990,.
  • 5吴尽晗.一阶谓词演算定理及其证明的余式方法.计算机学报,1990,.
  • 6Kapur D,Narendran P. An Equational Approach to Theorem Proving in First-Order Predicate Calculus[C] // Proc of the 10th Int' l Joint Conf on Artificial Intelligence, 1985, 1146- 1153.
  • 7[英]涅尔(Kmeale,W·) 著,张家龙,洪汉鼎.逻辑学的发展[M]商务印书馆,1985.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部