期刊文献+

用空间解析几何法进行天文定位定向的误差分析

Error analysis of space analytic geometry method for celestial position and orientation determination
下载PDF
导出
摘要 为了确定三视场定位定向设备各个误差源对定位定向误差的影响,建立了定位定向的误差分析模型。首先,给出了三视场导航设备采用空间解析几何法进行定位定向的原理。其次,指出影响定位定向的各个误差源,归纳分析了误差源的特性、概率分布以及误差源对定位定向信息对的影响。然后,利用定位定向原理建立起定位定向误差分析模型。最后,利用蒙特卡罗法进行误差仿真分析。仿真结果表明系统的定位均值误差为121.0 m;定向均值误差为7.4″,并指出定位定向主要的误差源是水平测量误差,其次是垂线偏差数据的误差。野外实验表明,该系统的定位均值误差为182.12 m;定向均值误差为9.3″,水平测倾角的误差对定位定向结果的影响最大。 In order to determine the influence of each error source on position and orientation determination error for three-field position and orientation device, the error analysis model of system was established. Firstly, the principle of three-field position and orientation device using space analytic geometry method was proposed, and the various error sources which affected accuracy of position and orientation was pointed out. Secondly, the characteristic and the probability distribution of error source were summarized; and the impact of error sources on position and orientation information pair was assessed. Then, the position and orientation error analysis model was established by using the homogeneous coordinate transformation matrix and principle of navigation. Finally, the error simulation was analyzed by using Monte Carlo method. The simulation results show that mean of position fix error is 121.0 m, mean of orientation fix error is 7.4'', and it is pointed out that dominant error source is horizontal measurement error, followed by data error of deviation of vertical. Field experiments show that the mean of position fix error is 182.12 m; mean of orientation fix error is 9.3", and it is demonstrated that horizontal measurement error has the main influence on the overall outcome.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第8期2364-2374,共11页 Infrared and Laser Engineering
基金 中科院国防科技创新基金(CXJJ-10-M53)
关键词 误差分析 空间解析几何 定位定向 三视场 天文导航 error analysis space analytic geometry method position and orientation determination three fields of view celestial navigation
  • 相关文献

参考文献15

  • 1王安国.导航战背景下的天文导航技术──天文导航技术的历史、现状及其发展趋势[J].天文学进展,2001,19(2):326-330. 被引量:29
  • 2王安国.现代天文导航及其关键技术[J].电子学报,2007,35(12):2347-2353. 被引量:46
  • 3Trex Enterprises Corp. Daytime Stellar Imager For Attitude Determination, USA: US 7, 349, 803 B2[P]. 2008-3-25.
  • 4Sodern. Star trackers: hydra family. [EB/OL].http:l/www. sodem.com/sites/en/ref/Star-Trackers-HYDRA_51 .html.
  • 5Ludovice Blarre, Ncolas Perrimon, Stephen Airey. New multiple head Star Sensor (HYDRA) description and development status: a highly autonomous, accurate and very robust system to pave the way for gyroless very accurate AOCS systems [C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2005(8): 817-825.
  • 6张圣云,杨仕才,王连柱.空间解析几何法天体定位精度分析[J].天津航海,2004(2):10-12. 被引量:5
  • 7王吴京.三视场恒星识别天文导航方法研究[D].北京:中国科学院大学.2012.
  • 8王昊京,王建立,吴量,姚凯男.三视场定位定向设备的视场确定[J].红外与激光工程,2015,44(6):1890-1897. 被引量:2
  • 9Wikipedia. World geodetic system [EB/OL]. http://en. wikipedia, org/wiki/World_Geodetic_System.
  • 10Kaplan G H. The IAU resolutions on astronomical reference systems, time scales, and Earth rotation models [EB/OL]. US Naval Observatory Circular No.179. http://arxiv.org/abs/ astro-ph/0602086vl, 2006.

二级参考文献62

  • 1林辉轮,王春鸿,姜文汉.低信噪比下扩展目标质心的高精度计算方法[J].光电工程,2005,32(8):9-12. 被引量:3
  • 2李玉峰,郝志航.星点图像超精度亚像元细分定位算法的研究[J].光学技术,2005,31(5):666-668. 被引量:37
  • 3李春艳,谢华,李怀锋,孙才红.高精度星敏感器星点光斑质心算法[J].光电工程,2006,33(2):41-44. 被引量:41
  • 4Shortis M R, Clarke T A, Short T. A comparison of some techniques for the subpixel location of discrete target images[C]/ISPIE, 1994, 2350:239-250.
  • 5夏一飞 黄天衣.球面天文学[M].南京:南京大学出版社,1995,5..
  • 6周忠谟 易杰军 周琪.GPS卫星测量原理与应用[M].北京:测绘出版社,1999..
  • 7季必达,唐建博.星光导航在综合导航中的地位和作用[A].天文导航文集[C].武汉:中国电子学会导航分会,1989.15-20.
  • 8唐建博.昼夜星体检测技术发展现状综述.光学与光电技术,2005,3(5):1-3.
  • 9王振华.天文导航技术与装备的发展现状及对策.光学与光电技术,2005,3(5):7-13.
  • 10黄盖云 王欣.国外舰用天文导航系统综述.光学与光电技术,2005,3(5):14-18.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部