期刊文献+

对地观测星载激光测高仪在轨姿态系统误差检校方法 被引量:7

Calibration method of on-orbit attitude systematic error for spaceborne laser altimeter of earth observation
下载PDF
导出
摘要 星载激光测高仪通过接收经地表反射的微弱激光脉冲回波,计算卫星与地表的距离;结合卫星位置和姿态数据,生成激光脚点精确地理位置和高程结果。对于高程精度10 cm量级的对地观测激光测高仪,必须对影响严重的姿态角系统误差进行标定和校正。文中推导得出星载激光测高仪姿态角误差与已知地表先验信息相关联的数学模型,设计了利用大洋表面作为地表标定场,通过卫星姿态机动方式,最小二乘估计算法校正卫星在轨系统误差的具体方法。仿真结果表明,所设计的方法能够准确估计存在的姿态系统误差,即使大规模观测值丢失,估计偏差也小于5%。这种在轨运行系统误差的标定方法对于对地观测星载激光测高仪的姿态误差检校具有参考意义。 The range between satellite and surface target was acquired by processing the weak received waveform which was transmitted from the space-borne laser altimeter and reflected by earth surface. Combined with the precise orbit and attitude data, the accurate location and elevation of laser footprint were calculated. As for the altimeter with elevation accuracy of 10 cm magnitude, the systematic error on attitude angles influencing the accuracy severely should be calibrated effectively. The analytic model of attitude angle error associated with priori knowledge of earth surface was deduced, and the calibration method used to eliminate the attitude error was designed, which utilized the ocean surface as calibration field, was by way of satellite attitude maneuver and based on least squares estimation algorithm. The results of simulation show that the designed method can estimate the systematic error precisely and effectively, even if the mass observed data were lost, the estimated bias is less than 5%. This on-orbit calibration method is beneficial to the systematic error correction for the space-borne laser altimeter, and is of reference significance.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第8期2401-2405,共5页 Infrared and Laser Engineering
基金 国家科技支撑计划项目(2012BAB16B01) 国家"十二五"民用航天预先研究项目(卫星激光测量数据处理与冰层高度变化反演) 卫星测绘技术与应用国家测绘地理信息局重点实验室经费资助项目(KLAMTA201408) 中国博士后科学基金面上资助项目(2015M572064) 山东省高等学校科技计划项目(J13LH04)
关键词 激光遥感 激光测高仪 在轨标定 系统误差 姿态机动 laser remote sensing laser altimeter on orbit calibration systematic error attitude maneuver
  • 相关文献

参考文献13

  • 1马跃,李松,周辉,翁寅侃.利用自适应滤波星载激光测高仪回波噪声抑制方法[J].红外与激光工程,2012,41(12):3263-3268. 被引量:16
  • 2Lefsky M A, Keller M, Yong Pang, et al. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms [J]. Journal of Applied Remote Sensing, 2007, 1(1): 1-18.
  • 3Luthcce S B, Rowlands D D, Stoneking E. Spacebome laser- altimeter-pointing bias calibration from range residual analysis [J]. Journal of Spacecraft and Rockets, 2000, 37 (3): 374-384.
  • 4Luthcke S B, Rowlands D D, Williams T A, et al. Reduction of ICESat systematic geolocation errors and the impact on ice sheet elevation change detection [J]. Geophysical Research Letters, 2005, 32: L21S05.
  • 5Martin C F, Thomas R H, Krabill W B, et al. ICESat range and mouting bias estimation over precise-surveyed terrain [J]. Geophysical Research Letters, 2005, 32: L21S07.
  • 6Harding D J, Carabajal C C. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure[J]. Geophysical Research Letters, 2005, 32: L21S10.
  • 7Magruder L A, Webb C E, Urban T J, et al. ICESat altimetry data product verification at White Sands space harbor [J]. IEEE Transactions on Geoseiences and Remote Sensing, 2007, 45(1): 147-155.
  • 8Fricker H A, Borsa A, Minster B, et al. Assessment of ICESat performance at the salar de Uyuni, Bolivia [J]. Geophysical Research Letters, 2005, 32: L21S06.
  • 9. Shuman C A, Zwally H J, Schutz B E. ICESat Antarctic elevation data: Preliminary precision and accuracy assessment [J]. Geophysical Research Letters, 2006, 33: L07501.
  • 10Sirota J M, Bae S, Millar P, et al. The transmitter pointing determination in the Geoscience Laser Altimeter System [J]. Geophysical Research Letters, 2005, 32: L22Sl1.

二级参考文献10

  • 1Kurtz N T, Markus T, Cavalieri D J, et al. Comparison of ICESat data with airbome laser altimeter measurements over arctic sea ice [J]. IEEE Transaction on Geoseience and Remote Sensing, 2008, 46(7): 1913-1924.
  • 2Rinne E, Shepherd A, Muir A, et al. A comparison of recent elevation change estimates of the devon ice cap as measured by the ICESat and EnviSAT satellite altimeters [J]. IEEE Transaction on Geoseienee and Remote Sensing, 2011, 49 (6): 1902-1910.
  • 3Burton J L. Laser altimetry measurements from aircraft and spacecraft[J]. Proceedings of the IEEE, 1989, 77(3): 463- 477.
  • 4Gardner C S. Ranging performance of satellite laser altimeters[J]. 1EEE Transaction on Geoscienee and RemoteSensing, 1992, 30(5): 1061-1072.
  • 5周辉.星载激光测高仪激光脚点信息反演与定位[D].武汉:武汉大学,2007.
  • 6Gardner C S. Target signatures for laser altimeters: an analysis[J]. Applied optics, 1982, 21(3): 448-453.
  • 7Brenner A C, Jay Zwally H, Bentley C R, et al. Derivation of Range and Range Distributions From Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights[R]. 2003.
  • 8Michelle A H, Jean B M, Bryan J. Decomposition of laser altimeter waveforms [J]. IEEE Transaction on Geoscience and Remote Sensing, 2000, 38(4): 1989-1996.
  • 9Afzal R S, Yu A W, Dallas J L. The geoscience laser altimeter system (GLAS) laser transmitter[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13 (5): 511-531.
  • 10赵欣,张毅,张黎明,王相京,赵平建,涂碧海.激光测高仪高斯回波分解算法[J].红外与激光工程,2012,41(3):643-648. 被引量:15

共引文献15

同被引文献40

  • 1李松.星载激光测高仪发展现状综述[J].光学与光电技术,2004,2(6):4-6. 被引量:31
  • 2徐代升,黄庚华,舒嵘,王建宇.星载激光高度计综合性能分析[J].红外,2005,26(1):1-8. 被引量:10
  • 3陈俊勇.对SRTM3和GTOPO30地形数据质量的评估[J].武汉大学学报(信息科学版),2005,30(11):941-944. 被引量:103
  • 4李然,王成,苏国中,张珂殊,唐伶俐,李传荣.星载激光雷达的发展与应用[J].科技导报,2007,25(14):58-63. 被引量:46
  • 5张翼飞,杨辉.激光高度计技术及其应用[J].中国航天,2007(12):19-23. 被引量:8
  • 6Brenner A C, Zwally H J, Bentley C R, et al. The algorithm theoretical basis document for derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights[R]. NASA Goddard Space Flight Center, 2012.
  • 7Li X, Xu L, Tian X, et al. Terrain slope estimation within footprint from ICESat/GLAS waveform: model and method [J]. Journal of Applied Remote Sensing, 2012, 6 (1): 063534-1-063534-24.
  • 8Shi J, Menenti M, Lindenbergh R. Parameterization of surface roughness based on ICESat/GLAS full waveforms: a case study on the Tibetan Plateau [J]. Journal of Hydrometeorology, 2013, 14(4): 1278-1292.
  • 9Yang Y, Marshak A, Vb.rnai T, et al. Uncertainties in ice- sheet altimetry from a spacebome 1064-nm single-channel lidar due to undetected thin clouds [J]. Geoseienee and Remote Sensing, IEEE Transactions on, 2010, 48(1): 250-259.
  • 10Duda D P, Spinhirne ,1 D, Eloranta E W. Atmospheric multiple scattering effects on GLAS altimetry. I. Calculations of single pulse bias [J]. Geoseienee and Remote Sensing, IEEE Transactions on, 2001, 39(1): 92-101.

引证文献7

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部