期刊文献+

基于改进元胞遗传算法的蜗杆传动多目标优化设计 被引量:1

Multi-optimization Design of Worm Transmission Based on Improved Cellular Genetic Algorithm
下载PDF
导出
摘要 建立了以蜗轮的齿冠体积最小、相对滑动速度最小和中心距最小为目标函数,以满足蜗轮蜗杆强度和刚度等条件为约束条件的多目标优化模型,提出了一种自适应差分进化的多目标元胞遗传算法。该算法针对多目标元胞遗传算法的特点,结合差分进化中不同进化策略的特性,将两种不同的进化策略融合为一种新的差分进化策略,得到一种参数自适应控制的多目标元胞差分遗传算法。将该算法同其他典型的多目标进化算法在标准测试函数上进行性能对比试验,结果显示所提出的算法相比其他算法具有更好的收敛性和分布性。工程实例的求解证明了该算法可有效解决相关实际问题。 Taking the minimization of the tooth crown of a worm wheel and the relative sliding speed transmission efficiency and the distance from the center as objectives, established the model for the multi-objec-tive optimization under that the worm transmission meet the needs for strength and stiffness and others. An adaptive differential evolution of multi-objective cellular genetic algorithm was proposed. Considering the feature of different differential evolution strategies, a new differential strategy with parameter adaptive-control was formed. Aiming at the characteristics of cellular multi-objective optimization algorithm, the new improved strategy was integrated into the algorithm. The comparative performance test results reveal that the proposed algorithm outperforms some state-of-the-art algorithms in terms of convergence and diversity. The engineering example proved the algorithm could solve the relevant practical problems effectively.
出处 《组合机床与自动化加工技术》 北大核心 2015年第8期10-14,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金(51275274)
关键词 元胞遗传算法 蜗杆传动 多目标优化设计 cellular genetic algorithm worm transmission multi-objective optimization design
  • 相关文献

参考文献13

  • 1贾毅朝,曲尔光,张慧鹏.基于MATLAB的蜗杆传动优化设计[J].组合机床与自动化加工技术,2010(5):97-99. 被引量:8
  • 2曹蕾蕾,裴建中,张涛,刘琼.基于PSO和模糊理论的蜗杆传动多目标优化设计方法[J].长安大学学报(自然科学版),2013,33(3):100-105. 被引量:3
  • 3Nebro A J, Durillo J J, Luna F, et al. Mocell: A cellular genetic algorithm for multiobjective optimization [ J ]. Inter- national Journal of Intelligent Systems, 2009, 24 ( 7 ) : 726 - 746.
  • 4Yuqiang Li, Shengming Liao, Gang Liu. Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and decision making. Electrical Power and Energy Systems ,2015 (64) : 167 - 175.
  • 5姚金涛,林亚平,张明武,童调生.一种基于决策图贝叶斯网络的强度Pareto进化算法[J].计算机学报,2005,28(12):1993-1999. 被引量:7
  • 6张屹,万兴余,郑小东,詹腾.基于改进元胞多目标遗传算法的机床主轴优化[J].计算机工程与应用,2015,51(6):260-265. 被引量:3
  • 7Price K V, Storn R M, Lampinen J A. Differential evolution, a practical approach to global optimization E J ]. 2005,37 - 45.
  • 8Deb K, Pratap A, Agarwal S, et al. A fast and elitist mul- tiobjective genetic algorithm: NSGA-II [ J ]. Evolutionary Computation, IEEE Transactions on, 2002, 6 ( 2 ) : 182 - 197.
  • 9Nebro A J, Durillo J J, Luna F, et al. Mocell: A cellular genetic algorithm for muhiobjective optimization [ J ]. Interna- tional Journal of Intelligent Systems, 2009, 24 ( 7 ) : 726 - 746.
  • 10Durillo J, Nebro A, Luna F, et al. Solving three-objective op- timization problems using a new hybrid cellular genetic algo- rithm [ M ]. Proceedings of the International Conference on Parallel Problem Solving from Nature. Heidelberg, Berlin, Germany ; Springer-Verlag. 2008 : 661 - 670.

二级参考文献37

共引文献16

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部