摘要
提出基于脑电信号(EEG)的睡眠分期研究。利用离散小波变换(DWT)的db8小波分解得到的细节分量作为信号新的表达,把各个细节分量能量作为特征,建立带高斯径向基核函数(RBF)的非线性支持向量机(SVM)模型。研究发现,其对睡眠分期研究的方案是可行的,满足模型对泛化能力的要求。
This paper proposes a research for sleep staging based on electroencephalogram (EEG). By using the discrete wavelet transform (DWT), the detail components by db8 wavelet decomposition are new expression of signal, whose energies are the feature. It establishes a nonlinear support vector machine(SVM) model with Gaussian radial basis kernel function(RBF). The study shows that the program of this paper is practicable for sleep stage research, which meets the requirements for model generalization ability.
出处
《微型机与应用》
2015年第16期18-20,共3页
Microcomputer & Its Applications
基金
上海市科学技术委员会资助项目(14441900300)
关键词
睡眠分期
离散小波变换
支持向量机
sleep staging
discrete wavelet transform
support vector machine