期刊文献+

基于MVRVM回归和RVM二叉树分类的自确认气动执行器故障诊断算法 被引量:9

Self-Validating Pneumatic Actuator Fault Diagnosis Based on MVRVM Regression and RVM Binary Tree Classification
下载PDF
导出
摘要 为了解决自确认气动执行器的故障诊断问题,提出了一种基于多变量关联向量机(MVRVM)回归和关联向量机二叉树分类的气动执行器故障诊断方法,该方法利用多变量关联向量机回归建立气动执行器的正常模型,然后将实际输出与模型输出比较,产生残差作为气动执行器的非线性故障特征向量。以残差作为输入建立关联向量机二叉树多分类机,诊断气动执行器故障类型。利用DABLib生成的故障数据对所研究方法进行了验证,并与基于RVM一对一分类的故障诊断方法进行了比较,结果表明该方法是解决气动执行器故障诊断的小样本和非线性问题的一种有效方法。 In order to solve the fault diagnosis problem of self-validating pneumatic actuators, a fault diagnosis approach based on multi-variable relevance vector machine (MVRVM)and relevance vector machine (RVM)binary tree classification is proposed. The MVRVM regression is used to establish the normal model of the pneumatic actuator. The residuals generated by comparing the output of the model and the actual actuator are used as the nonlinear features of the pneumatic actuator. Then the RVM multi-classifier based on binary tree is established and trained by the residuals, which is used to identify the condition and fault pattern of the actuator. The proposed approach is verified using fault data generated by DABLib model and compared with RVM one-against-one multi-classification method. The results indicate that the proposed approach is a valid method to resolve the small sample and nonlinear problem in pneumatic actuator fault diagnosis.
出处 《传感技术学报》 CAS CSCD 北大核心 2015年第6期842-849,共8页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金青年基金项目(61104023)
关键词 自确认气动执行器 关联向量机 多变量关联向量机回归 RVM二叉树分类 RVM一对一分类 故障诊断 self-validating ( SEVA ) pneumatic actuator relevance vector machine (RVM) multi-variable relevance vector machine ( MVRVM ) relevance vector machine ( RVM ) binary tree classifier relevance vector machine (RVM) one-against-one classifier fault diagnosis
  • 相关文献

参考文献14

  • 1师黎,费敏锐.气动执行器故障诊断与容错控制的研究进展[J].自动化仪表,2004,25(8):4-9. 被引量:4
  • 2冯志刚,张学娟.基于LS-SVM和SVM的气动执行器故障诊断方法[J].传感技术学报,2013,26(11):1610-1616. 被引量:9
  • 3Henry M P, Clarke D W. The Self Validating Sensor: Rationale, Definitions and Examples[ J]. Control Engineering Practice, 1993, 1(4) :585-610.
  • 4Feng Zhigang, Qiu Meng. Design and Implementation of Self-Vali- dating Pneumatic Actuator Hardware System Based on DSP and MCU [ J]. International Journal of Hybrid Information Technology, 2014,7(6) :101-114.
  • 5Karpenko M, Sepehri N, Scuse D. Diagnosis of Process Valve Actu- ator Faults Using a Muhilayer Neural Network [ J ]. Control Engi- neering Practice, 2003,11 ( 11 ) : 1289-1299.
  • 6Faisel J, Ron J, Witezak M. A Neuro-Fuzzy Multiple Medel Observer Approach to Robust Fault Diagnosis Based on the DAMADICS Benchmark Problem [ J ]. Control Engineering Practice, 2006, 14 (6) :699-717.
  • 7Michal B, Ron P, Michal S. Introduction to the DAMADICS Actuator FDI Benchmark Problem [ J ]. Control Engineering Practice, 2006,14 (6) :577-596.
  • 8沈强,刘洁瑜,王琪,王杰飞.基于相关向量机的MEMS陀螺仪随机漂移补偿[J].传感技术学报,2014,27(5):596-599. 被引量:6
  • 9Thayananthan A, Navaratnam R, Stenger B, et al. Multivariate Rel- evance Vector Machines for Tracking [ C ]//Proceedings of the 2006 European Conference on Computer Vision, 2006,3953 : 124- 138.
  • 10Thayananthan A, Navaratnam R, Stenger B, et al. Pose Estimation and Tracking Using Muhivariate Regression [ J ]. Pattern Recognition Letters, 2008,29 ( 9 ) : 1302-1310.

二级参考文献94

  • 1陆振波,蔡志明,姜可宇.基于改进的C-C方法的相空间重构参数选择[J].系统仿真学报,2007,19(11):2527-2529. 被引量:104
  • 2Tadjudin S, Landgrebe D A. Covariance estimation with limited training samples[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(4): 2113-2118.
  • 3Kuo B C, Landgrebe D A. Nonparametric weighted feature extraction for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(5): 1096-1105.
  • 4Melgani F, Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.
  • 5Bazi Y, Melgani F. Toward an optimal SVM classification system for hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3374-3385.
  • 6Tipping M E. Sparse bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1: 211-244.
  • 7Demir B, Erturk S. Hyperspectral image classification using relevance vector machines[J]. IEEE GeoScience and Remote Sensing Letters, 2007, 4(4): 586-590.
  • 8Foody G M. RVM-based multi-class classification of remotely sensed data[J]. International Journal of Remote Sensing, 2008, 29(6): 1817-1823.
  • 9Camps-Valls G, Gomez-Chova L, Munoz-Mari J, et al. Retrieval of oceanic chlorophyll concentration with relevance vector machines[J]. Remote Sensing of Environment, 2006, 105: 23-33.
  • 10Landgrebe D A. AVIRIS NW. Indiana's Indian pines data set[DB/OL]. (1992-06-03)[1996-05-06]. ftp ://ftp. een. purdue, edu/biehl/MultiSpec/ 92AV3C, 1992.

共引文献28

同被引文献66

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部