期刊文献+

联合改进拉普拉斯特征映射和k-近邻分类器的高光谱影像分类 被引量:8

Hyperspectral Imagery Classification Using the Combination of Improved Laplacian Eigenmaps and Improved k-nearest Neighbor Classifier
原文传递
导出
摘要 高光谱影像利用流形学习降维和分类器分类时往往忽略了影像本身的空间特征,这将严重制约最终的分类精度。因此,本文以拉普拉斯特征映射和k-近邻分类器为例,提出了自适应加权综合核距离来同时改进流形学习方法和分类器方法,目的在于改善高光谱影像的分类结果。自适应加权综合核距离同时考虑高光谱影像的光谱特征和空间特征,且能够针对每个像素点自动估算空间邻域来描述空间特征。通过Indian和PaviaU两个数据集来分析和验证本文提出的组合策略,实验结果表明,本文提出的组合策略得到的分类结果明显优于常规拉普拉斯特征映射降维和常规k-近邻分类的组合策略,能够得到更高精度的分类结果。 Hyperspectral imagery (HSI) classification can be achieved through the combination scheme of nonlinear dimensionality reduction using Laplacian eigenmaps (LE) and classification using the knearest neighbor (KNN) classifier. However, both the LE and the KNN classifier omit spatial features of HSI data as the imagery. That seriously restricts the classification result of HSI data. This paper presents the adaptive weighted summation kernel distance (AWSKD) to improve both the LE and the KNN classifier, aiming to promote the classification accuracies of HSI data. The AWSKD considers the spectral and spatial features of HSI data, and adaptively estimate the proper spatial neighborhood size for describing the spatial feature of each pixel. The Indian and PaviaU datasets are utilized to analyze and testify the proposed combination scheme of improved LE (ILE) and improved KNN (IKNN) classifier. Experimental results show that the proposed combination scheme achieves sharply higher classification accuracies than the regular scheme of LE and KNN.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2015年第9期1151-1156,共6页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41401389) 中国博士后科学基金第57批面上资助项目(2015M570668) 宁波市自然科学基金资助项目(2014A610173) 浙江省教育厅科研项目(Y201430436) 宁波大学学科建设项目(ZX2014000400) 矿山空间信息技术国家测绘地理信息局重点实验室开放基金资助项目(KLM201309)~~
关键词 高光谱分类 非线性降维 改进拉普拉斯特征映射 改进k-近邻分类 自适应加权综合核距离 hyperspectral imagery classification nonlinear dimensionality reduction improved Laplaclan eigenmaps improved k-nearest neighbor classifier adaptive weighted summation kernel distance
  • 相关文献

参考文献15

  • 1Zhang C, Xie Z. Combining Object-Based Texture Measures with a Neural Network for Vegetation Mapping in the Everglades from HyperspectraI Im- agery [J]. Remote Sensing of Environment, 2012, 124:310-320.
  • 2Bishop C A, Liu J G, Mason P J. Hyperspectral Remote Sensing for Mineral Exploration in Pulang, Yunnan Province, China [J]. International Journal of Remote Sensing, 2011, 32:2 409-2 426.
  • 3Donoho D I.. High-Dimensional Data Analysis= TheCurses and Blessings of Dimensionality[C]. AMS Math Challenges Lecture, Los Angeles, 2000.
  • 4Bachmann C M, Ainsworth T L, Fusina R A. Ex- ploiting Manifold Geometry in Hyperspectral Image- ry [J]. IEEE Transactions on Geoscience and Re- mote Sensing, 2005, 43:441-454.
  • 5Tenenbaum J B, Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000,290:2 319-2 323.
  • 6Rowels S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding [J]. Sci- ence, 2000, 290:2 323-2 326.
  • 7Qian S E, Chen G. A New Nonlinear Dimensionali- ty Reduction Method with Application to Hyper- spectral Image Analysis [C]. IEEE International Geoscience and Remote Sensing Symposium , Bar- celona, Spain,2007.
  • 8Crawford M M, Ma L. Kin W. Exploring Nonlin- ear Manifold Learning for Classification of Hyper- spectral Data [J]. Optical Remote Sensing, 2011 (3) : 207-234.
  • 9孙伟伟,刘春,施蓓琦,李巍岳.利用偏最小二乘方法修复高光谱影像等距映射降维中遗失点的坐标[J].武汉大学学报(信息科学版),2012,37(5):550-554. 被引量:2
  • 10李爱霞,关泽群,冯甜甜.一种利用流形学习进行多影像匹配的方法[J].武汉大学学报(信息科学版),2012,37(11):1303-1306. 被引量:4

二级参考文献26

  • 1Tenenbaum J B, Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000, 290(5 500): 2 319- 2 325.
  • 2Chen Y, Crawford M M, Ghosh J. Applying Non- linear Manifold Learning to Hyperspectral Data for Land Cover Classification[C]. IEEE, 2005: 4 313- 4 314.
  • 3Chen Y, Crawford M M. Improved Nonlinear Manifold Learning for Land Cover Classification Viaintelligent Landmark Selection[C]. International Symposium on Geoscience and Remote Sensing, Denver, Colorado, USA, 2OO6.
  • 4Fong M. Dimension Reduction on Hyperspectral Images[R]. University of California, Los Angeles, 2007.
  • 5Dong Guangjun, Zhang Yongsheng, Song Jin. Di- mensionality Reduction of Hyperspectral Data Based on ISOMAP Algorithm[C]. The 8th International Conference on Electronic Measurement and Instru- ments, Xi'an, China, 2007.
  • 6Bachmann C M, Ainsworth T L, Fusina R A. Ex ploiting Manifold Geometry in Hyperspectral Image ry[J]. IEEE Transactions on Geoscience and Re mote Sensing, 2005, 43(3): 441-454.
  • 7Bachmanri C M, Ainsworth T L. Modeling Data Manifold Geometry in Hyperspectral Imagery[C]. IEEE International Geoscienee and Remote Sensing Symposium, Anchorage, AK, 2004.
  • 8Wold H. Path Models with Latent Variables: the NIPALS Approach [M]. New York: Academic Press, 1975.
  • 9Shao C, Huang H. Selection of the Optimal Param- eter Value for the ISOMAP Algorithm[C]. The 4th Mexican International Conference on Artificial Intel- ligence, Monterrey, Mexico, 2005.
  • 10van der Maaten L J P, Postma E O, van der Herik H J. Dimensionality Reduction: A Comparative Re- view[R]. Maastricht University, MICC, 2009.

共引文献4

同被引文献73

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部