期刊文献+

结合HMM隐状态基元和贝叶斯准则的运动捕获片段过渡

Capture Data Transition by Combining HMM-based Hidden Primitives and Bayes Rule
下载PDF
导出
摘要 针对运动捕获序列拼接时常常忽略其运动语义自然过渡问题,提出了一种结合隐马尔可夫模型隐状态基元和贝叶斯准则的运动捕获数据片段过渡方法.首先,提取两种代表性的人体骨架特征并归一化,得到组合特征数据矩阵来表示原始运动数据;其次,采用HMM方法对组合特征矩阵进行运动隐状态基元预测,发现其运动隐状态变化规律;紧接着,依据连接处不同运动序列隐状态预测结果,结合贝叶斯规则搜索运动片段作为连接片段;最后,对序列连接处进行四元数插值平滑处理,达到运动片段自然过渡的目的.实验结果表明,本文提出的方法能够较好地保持运动状态的自然过渡,且过渡区域无明显地拼接痕迹,有助于不同语义运动片段自动拼接时运动姿态的自然衔接. Existing motion assemble methods often ignore the naturality of motion transitions. To this effect,this paper presents an efficient motion transition approach by combining the HM M-based hidden primitives and Bayes rule. First,the proposed approach extracts tw o representative feature vectors and normalizes them into an assembled feature matrix,featuring on briefly representing the raw data.Then,the typical HM M is employed to estimate the hidden primitives and simultaneously find their transitions. Subsequently,according to the pre-estimated result,the Bayes rule is adopted to search the proper motion clips for motion linking. Finally,quaternion interpolation is further utilized to smooth the connected motion clip,w hereby the w hole motion sequence can be w ell transited. The experimental results have show n that the proposed approach is able to keep the transition motion w ithout splicing trace and the assembled heterogeneous semantic motion clips are connected naturally.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第9期2102-2107,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61202298 61300138)资助 福建省自然科学基金项目(2014J01239 2015J01656)资助
关键词 运动过渡 贝叶斯规则 隐状态基元 四元数插值 motion transition Bayes rule hidden primitives quaternion interpolation
  • 相关文献

参考文献2

二级参考文献20

  • 1沈军行,孙守迁,潘云鹤.从运动捕获数据中提取关键帧[J].计算机辅助设计与图形学学报,2004,16(5):719-723. 被引量:44
  • 2Lim IS, Thalmann D. Key Posture Extraction out of Human Motion Data by Curve Simplification [C]// Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turke.y, 2001. USA: IEEE, 2001:1167-1169.
  • 3Xiao J, Zhuang Y, Wu F, et al. A Group of Novel Approaches and a Toolkit for Motion Capture Data Reusing [J]. Multimedia Tools and Applications (S1380-7501), 2009, 1-30.
  • 4Wang J, Bodenheimer B. An Evaluation of a Cost Metric for Selecting Transitions between Motion Segments [C]// Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation, San Diego, California, USA: Eurographics Association, 2003: 232-238.
  • 5Onuma K, Faloutsos C, Hodgins JK. FMDistance: A Fast and Effective Distance Function for Motion Capture Data [C]// Proceedings of ACM Eurograpbics, Short Papers, Dublin, Ireland, USA: ACM, 2008.
  • 6Lee J, Chai J, Reitsma PSA. Interactive Control of Avatars Animated with Human Motion Data [J]. ACM Transactions on Graphics (S0730-0301), 2002, 21(3): 491-500.
  • 7Forbes K, Fiume E. An Efficient Search Algorithm for Motion Data Using Weighted PCA [C]// Proceedings of the ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, Los Angeles, California, USA: ACM, 2005: 67-76.
  • 8Cuntoor N, Chellappa R. Key Frame-Based Activity Representation Using Antieigenvalues [C]// Proceedings of Asian Conference on Computer Vision (ACCV), Hyderabad, India: Springer Berlin/ Heidelberg, 2006: 499-508.
  • 9Barbic Jernej,Safonova Alla,Pan Jia-Yu,Christos Faloutsos,Jessica K.Hodgins,Nancy S Pollard.Segmenting motion capture data into distinct behaviors[C]//Proceedings of the 2004 Conference on Graphics interface,Canada:Canadian Human-Computer Communications Society.2004.
  • 10Souvenir Richard,Pless Robert.Manifold Clustering[C]//Tenth IEEE International Conference on Computer Vision,Beijing:IEEE Computer Society.2005.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部