期刊文献+

脉冲波作用下竖直弹性板的水弹性响应

Hydroelastic response of a vertical elastic plate to pulse wave
下载PDF
导出
摘要 基于线性势流理论,将流场分为3个部分:入射势与反射势部分、辐射势的记忆部分、辐射势的瞬时部分,竖直弹性板的时域振动基于模态叠加法,利用傅里叶与拉普拉斯变换求解流场控制方程,与板的振动方程耦合,推导得出波浪作用下竖直弹性板的时域耦合方程,并利用二级四阶隐式Runge-Kutta法求解方程。首先给定竖直板一个初始弯曲,得到的结果与解析解和数值解结果吻合良好,验证了方法的正确性。其次对脉冲波作用下弹性竖直板的响应进行研究,分析了板的刚度系数、质量系数、脉冲幅值和边界条件对其水弹性响应的影响。研究结果表明,刚度系数对板的振动频率影响很大,脉冲幅值与板的振动幅度正相关,两边固定时对竖直弹性板的疲劳损伤最严重。 Based on the linear potential flow theory, and reflection potential, memory section of radiation time-dependent elastic deflection of a vertical elastic the flow field is divided into three sections: incident potential potential and transient section of the radiation potential. The plate is described by the mode-expansion method, the velocity potential is solved by using Fourier transform and Laplace transform, and the implicit 4th-order Runge-Kutta scheme with uniform time step is applied to solve the coupled motions of an elastic plate and fluid. First, with an initial condition that the elastic plate is bent, the comparative results are in good agreement with corresponding linear analytical solution and numerical solution. Second, the hydroelastic vibration of a vertical elastic plate induced by the pulse wave is considered, and the effects of the elastic plate stiffness coefficient, mass coefficient, pulse amplitude and edge conditions on hydroelastic behavior are studied systematically. Finally, the following conclusions have been obtained: the stiffness coefficients have a great impact upon the vibration frequency; the vibration amplitude values have a positive correlation with the pulse amplitude values ; and the fatigue damage of the vertical elastic plate is the most severe when the plate is fixed on both sides.
出处 《水利水运工程学报》 CSCD 北大核心 2015年第4期1-8,共8页 Hydro-Science and Engineering
基金 国家自然科学基金"自然基金群体项目"(51221961)
关键词 竖直弹性板 模态叠加法 水弹性响应 脉冲波 vertical elastic plate a mode-expansion method hydroelastic response pulse wave
  • 相关文献

参考文献14

  • 1WU You-sheng. Hydroelasticity of floating bodies[D]. London: University of Brunel, 1984.
  • 2KASHIWAGI M. Research on hydroelastic responses of VLFS: Recent progress and future work [ J ]. International Journal of Offshore and Polar Engineering, 2000, 10(2) : 81-90.
  • 3SQUIRE V A. Review of ocean waves and sea-ice revisited[ J]. Cold Regions Science and Technology, 2007, 49(2) : 110-133.
  • 4PETER M A, MEYLAN M H. Time-dependent interaction of water waves and a vertical elastic plate [ C ]//Proceedings of the 23rd International Workshop on Water Waves and Floating Bodies, Keroa, 2008.
  • 5HE G, KASHIWAGI M. Nonlinear analysis on wave-plate interaction due to disturbed vertical elastic plate [ J ]. Journal of Hydrodynamics(SerB), 2010, 22(5): 507-512.
  • 6HE G, KASHIWAGI M, HU C. Nonlinear solution for vibration of vertical elastic plate by initial elevation of free surface [ J ]. International Jourual of Offshore and Polar Engineering, 2010, 22( 1 ) : 34-40.
  • 7HE G, KASHIWAGI M. Numerical analysis of the hydroelastic behavior of a vertical plate due to solitary waves [ J ]. Journal of Marine Science and Technology, 2012, 17(2) : 154-167.
  • 8HE G, KASHIWAGI M. Nonlinear solution for vibration of vertical plate and transient waves generated by wave impact [ J ]. International Journal of Offshore and Polar Engineering, 2009, 19 (3) : 189- 197.
  • 9范从军,梁书秀,孙昭晨.时域内规则波作用下竖直板的水弹性响应[J].海洋工程,2013,31(5):37-44. 被引量:4
  • 10WATANABE E, UTSUNOMIYA T. Hydroelastic analysis of pontoon-type VLFS: a literature survey[ J]. Engineering Structure, 2004, 26(2): 245-256.

二级参考文献3

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部