期刊文献+

基于微粒群技术的多分拣区产品存储的算法设计

Optimization Algorithm Design of the Forward Reserve Problem for Multiple Forward Areas Based on Particle Swarm Techonology
下载PDF
导出
摘要 由于多分拣区产品存储优化决策是一类典型的NP难问题,求解较为困难,尤其当问题规模增大后,应用精确算法求解时间代价较高。考虑到微粒群技术在求解大规模组合优化问题的优势,本论文针对多分拣区产品存储优化设计了微粒群算法,并用算例验证了该算法的有效性。 Forward-reserve problem(FRP) in a multiple forward area can not easily be solved since it is a NP-hard problem. Especially, for a large sized problem it is very time-consuming to solve by using the exact algorithm. Since particle swarm optimization (PSO)shows great efficiency when solving a big scale optimization problem, the paper proposed PSO for FRP in multiple forward area and a numerical example showed the effectiveness of the proposed algorithm.
出处 《交通运输工程与信息学报》 2015年第3期16-21,共6页 Journal of Transportation Engineering and Information
基金 四川省科技支撑计划项目(2012GZ0063) 中央高校基本科研业务费专项资金资助(2682013CX074)
关键词 多分拣区 产品存储优化 微粒群 Multiple forward areas forward-reserve problem particle swarm optimization
  • 相关文献

参考文献6

  • 1Heragu S S, Du L, Mantel R J, et al. Mathematical model for warehouse design and product allocation[J]. International Journal of Production Research, 2005, 43(2): 327-338.
  • 2Van den Berg J P, Sharp G P, Gademann A N, et al. Forward-reserve allocation in a warehouse with unit-load replenishments[J]. European Journal of Operational Research, 1998, 111 (1): 98-113.
  • 3Frazelle E H, Hackman S T, Passy U, et al. The forward-reserve problem[M]. John Wiley & Sons, Inc., 1994.
  • 4Gu J, Goetschalckx M, MeGinnis L F. Solving the forward-reserve allocation problem in warehouse order picking systems[J]. Journal of the Operational Research Society, 2010, 61(6): 1013-1021.
  • 5谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 6陈彦如,单翠,蒋阳升,等.多分拣区FRP的GA&SS算法设计[J/OL].重庆交通大学学报(自然科学版).20141205.1507.013.htmldetail/50.1190.

二级参考文献34

  • 1[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 2[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 3[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 4[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 5[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 6[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 7[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 8[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 9[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.
  • 10[6]Kennedy J. The particle swarm: Social adaptation of knowledge[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Indiamapolis,1997.303-308.

共引文献421

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部