摘要
设R是一个有单位元的结合环,证明了如下结果:若对于任意的a∈R\J(R),b∈R,满足(ab)k=akbk,其中k为3个连续的正整数,J(R)是R的Jacobson根,则R是一个交换环.
Let R be an associative ring with identity. It showed that for any a∈R/J(R), b ∈R satisfied(ab)k = akbk , for three consecutive positive integers k, where J(R) was the Jacobson radical of R, then R was a commutative ring.
出处
《南通大学学报(自然科学版)》
CAS
2015年第2期69-70,90,共3页
Journal of Nantong University(Natural Science Edition)
基金
国家自然科学基金项目(11401009)