期刊文献+

基于特征聚集度的FCM-RSVM算法及其在人工焊点缺陷识别中的应用 被引量:1

An FCM-RSVM Algorithm Based on Feature Aggregation Degree and Its Application in Artificial Joints Defect Recognition
下载PDF
导出
摘要 针对人工焊点缺陷识别方法进行研究,提出了一种基于特征聚集度的模糊C均值聚类(FCM)与松弛约束支持向量机(RSVM)联用的分类识别算法。在提取人工焊点特征向量的基础上,算法首先对样本特征数据进行模糊C均值聚类,依据样本隶属度函数计算不同特征的特征聚集度,并由特征聚集度指标改进RSVM算法中的松弛量参数,建立最终的分类器模型。实验结果表明:本文提出的算法建立了泛化能力更强的分类模型,能有效抑制噪声及模糊边界点对分类模型的影响,在人工焊点缺陷识别的应用中获得了满意的识别结果。 In order to improve the defect recognition of manual solder joints, this paper proposes a feature-aggregation-degree based combination algorithm of fuzzy C-means elustering(FCM) and relaxed support vector machine (RSVM). Firstly, the characteristics of samples are extracted based on FCM algorithm and the feature aggregation degrees are calculated according to the different memberships. Then, the slack variable parameter of RSVM algorithm is repaired based on the feature aggregation degree such that the final classification model is established. The experiment results show that the proposed algorithm can effectively reduce the effect of noise or blur point on the classification model and build a stronger generalization classification model to improve the accuracy of defect recognition.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期538-542,共5页 Journal of East China University of Science and Technology
基金 国家自然科学基金(61371150)
关键词 焊点缺陷识别 特征聚集度 模糊C均值聚类 松弛约束支持向量机 solder joints defect recognition feature aggregation degree fuzzy C-means clustering relaxed support vector machine
  • 相关文献

参考文献14

  • 1Wu Hao,Zhang Xianmin, KuangYongcong, et al. Solderjoint inspection based on neural network combined withgenetic algorithm[J]. Optik,2013,124(20): 4110-4116.
  • 2Lzakian H,Abraham A. Fuzzy C-means and fuzzy swarm forfuzzy clustering problem[J]. Expert Systems with Applica-tion, 2011’ 38(3):1835-1838.
  • 3Sabzekar M,Naghibzadeh M. Fuzzy C-means improvementusing relaxed constraints support vector machines [ JApplied Soft Computing, 2013, 13: 881-890.
  • 4卢盛林,张宪民,邝泳聪.基于神经网络的PCB焊点检测方法[J].华南理工大学学报(自然科学版),2008,36(5):135-139. 被引量:20
  • 5Ali Etemad S,Ali A. Classification and translation of styleand affect in human motion using RBF neural networks[J].Neuro Computing, 2014, 129: 585-595.
  • 6Desir C,Petitjean C,Heutte L,et al. An SVM-based distallung image classification using texture descriptors[J]. Com-puterized Medical Imaging and Graphics,2012, 36(4):264-270.
  • 7Ji Aibing,Chen Songcan,Hua Qiang. Fuzzy classifier basedon fuzzy support vector machine [J]. Journal of Intelligentand Fuzzy Systems, 2014,26(1):421-430.
  • 8Sabzekar M,Yazdi H S,Naghibzadeh M. Relaxed con-straints support vector machines for noisy data[J]. NeuralComputing and Application, 2011,20: 671-685.
  • 9Chen Jinjun, Xiang Ting. Robot grasp pattern recognitionbased on wavlet and BP neural network[J], Applied Mechan-ics and Materials, 2013, 331 :290-293.
  • 10万永菁,张佩,钱佳.一种融合图像滤波的FCM图像分割算法及其应用[J].华东理工大学学报(自然科学版),2013,39(2):195-199. 被引量:3

二级参考文献39

  • 1卢清华,张宪民.基于梯度的多图像小波变换运动测量[J].华南理工大学学报(自然科学版),2007,35(1):39-43. 被引量:4
  • 2李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 3Erin L. Allwein, Robert E. Schapire. Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers[J ]. Journal of Machine Learning Research 1 (2000) 113141 : 118-129.
  • 4边祺 张学工.模式识别[M].北京:清华大学出版社,2004(8).176-226.
  • 5U. H. -G. Kre? el , Pairwise classification and support vector machines. In B. Scholkopf,C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: [J] Support Vector Learning: 255 - 268.
  • 6J. C. Plat, N. Cristianini, and J. Shawe- Taylor. Large margin DAGs for multiclass classification. In S. A. Solla, T.K. Leen, and K. - R. Muller, editors[J]. Advances in Neural Information Processing Systems 12 : 547-- 553.
  • 7B. Kijsirikul and N. Ussivakul. Multiclass support vector machines using adaptive directed aeyelie graph[ D]. In Proceedings of International Joint Conference on Neural Networks ( IJCNN 2002) : 980- 985.
  • 8Francesco Ricci and David W. Aha. Eorror _ Correcting Output Codes for local Learners[J]. Chenitz Germany. April 1998:21-24.
  • 9J. Weston and C. Watkins. Support vector machines for multi- class pattern recognition[D]. In Proceedings of 7th European Symposium on Artificial Neural Networks (ESANN ' 99 ) : 219-224.
  • 10史朝晖.[D].空军工程大学导弹学院,2005(1):52-54.

共引文献53

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部