期刊文献+

基于主轴电流信号的铣削力监测方法研究 被引量:4

Research on Milling Force Supervisory Method Based on Spindle Current Signal
下载PDF
导出
摘要 基于主轴电流信号监测铣削力的方法在现代数控加工过程中具有广泛的应用前景。针对实际加工中遇到的电流信号处理的问题,利用互相关分析方法对电流信号进行处理,提取电流信号和铣削力信号的频谱特征,实验结果表明此方法对电流信号的处理效果显著,能够对铣削力信号进行监测。 Based on the fact that the spindle current signal monitoring the milling force method has broad application prospects in modern NC machining process, according to the current signal processing problems that encountered in the actual processing, this paper is using the correlation analysis method to deal with the current signal, extract frequency characteristics form of the current signal and the milling force signal. The experiment results show that this method is effective and feasible in current signal processing, which can be used for monitoring the milling force signal.
出处 《机械研究与应用》 2015年第4期37-39,共3页 Mechanical Research & Application
基金 山东省优秀中青年科学家奖励基金资助(编号:BS2012ZZ004)
关键词 主轴电流 铣削力监测 互相关算法 spindle current milling force supervisory cross-correlation algorithm
  • 相关文献

参考文献10

  • 1Tonshoff. H. K. Developments and Trends in Monitoring and Control of Machining Process[ J ]. Annals of the CIRP, 1988,37 ( 2 ) : 103 - 109.
  • 2Tlurty. J. A Critical Review of Sensors for Unmanned Machining[ J]. Annals of the CIRP, 1983,32 (2) : 107-108.
  • 3Ed. Seharp,Tool Monitoring Keeps on Eye on Automated Turning [ J ]. American Machinist, 1993,137 ( 10 ) : 1073-1098.
  • 4计时鸣,张宪,张利,万跃华,袁巨龙,张立彬.计算机视觉在刀具状态监测中的应用[J].浙江工业大学学报,2002,30(2):143-148. 被引量:10
  • 5Wang L, Mehrabi M G, Kannatey E J R,et al. Hidden Markov Model -based Tool Wear Monitoring in Turning [ J 1. J Manuf Sei Eng, 2002,124 ( 3 ) :651-658.
  • 6Sun J, Hong G S, Rahnmn M, et al. htentification of Feature Set fi~r Effective Tool Condition Monitoring By Acoustic Emission Sensing. lnt J Prnd Res,2004,42(5 ) :901-918.
  • 7Y. -C. Chang, K. -T. 1.ee, H. -y. Chuang. Cutting force estimation of Spindle Motor [ J ]. Journal of Control Systems Technology, 1995,3 (2) :145-152.
  • 8李斌,张琛,刘红奇.基于主轴电流的铣削力间接测量方法研究[J].华中科技大学学报(自然科学版),2008,36(3):5-7. 被引量:15
  • 9Bukkapatnam S T S, Kumara S R T,Lakatakiaa. Fractal Estimation of Flank Wear in Turning[ J]. ASME J Dyn Syst Meas Cont,2000, 122 : 89-94.
  • 10毛新勇,刘红奇,李斌.主轴电流信号中铣削力成分的时频分析及提取方法研究[J].中国科学(E辑),2009,39(11):1824-1827. 被引量:7

二级参考文献21

  • 1Satish B, Soundar R K, Akhlesh L, et al. Fractal estimation of flank wear in turning. ASMEJ Dyn Syst Meas Cont, 2000, 122(1): 89--94.
  • 2Dimla E D. Sensor signals for tool wear monitoring in metal cutting operations: review of methods. Int J Mach Tool Manuf, 2000, 40(9): 1073--1098.
  • 3Karuda S, Bradley C. A review of machine vision sensors for tool condition monitoring. Compu Indust, 1997, 34(1): 55--72.
  • 4Sun J, Hong G S, Rahman M, et al. Identification of feature set for effective tool condition monitoring by acoustic emission sensing. Int J Prod Res, 2004, 42(5): 901--918.
  • 5Wang L, Mehrabi M G, Kannatey E J R, et al. Hidden Markov model-based tool wear monitoring in turning. J Manuf Sci Eng, 2002, 124(3): 651--658.
  • 6Balazinski M, Czogala E, Jemielniak K, et al. Tool condition monitoring using artificial intelligence. Eng Appl Artif Intel, 2002, 15(1): 73--80.
  • 7Bernhard S. On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. Mech Syst Sig Proc, 2002, 16(4): 487--546.
  • 8Lee B Y, Tarng Y S. Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current, lntJ Adv Manuf Technol, 1999, 15(2): 238--243.
  • 9Xu M, Jerard R B, Fussell B K. Energy based cutting force model calibration for milling. Comput Aided Des Appl, 2007, 4(1-4): 341 --351.
  • 10Jeong Y H, Cho D W. Estimating cutting force from rotating and stationary feed motor currents on a milling machine. Int J Mach Tool Manuf, 2002, 42(14): 1559--1566.

共引文献27

同被引文献15

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部