期刊文献+

串联死区算子的压电微夹钳PI迟滞模型 被引量:4

Research on PI Hysteresis Model with Dead-zero Operator of Piezoelectric Micro-gripper
下载PDF
导出
摘要 针对Prandtl-Ishlinskii(PI)模型要求被描述对象的初载曲线为凸函数,且模型与其逆模型都应关于算子中心对称的不足,通过引入死区算子对PI模型进行改进,以使其更好地描述具有非凸、非奇对称的压电陶瓷材料的迟滞特性。基于实测的压电微夹钳初载曲线,采用等分阈值方式,并通过使改进PI模型与实测初载曲线间的误差函数为最小,辨识出改进PI模型的参数,建立了压电微夹钳的迟滞模型。实验结果表明,在微夹钳15.2μm的最大位移范围内,模型误差的变化范围为-0.310~0.156μm,所建模型能很好地描述压电微夹钳的迟滞特性。 Prandtl-Ishlinskii(PI) model requires that an initial loading curve of described object is convex func- tion. At the same time,the requirements of PI model and its inverse model are symmetric about operator center. To overcome this shortage, PI model is improved by connecting dead-zero operator. The proposed model can well de- scribe the piezoelectric ceramic material hysteresis curve with non-convex, non odd symmetric characteristic. Based on the measured initial loading curve of the piezoelectric micro-gripper, using a method of equal division threshold and minimizing the error function between improved PI model and the initial loading curve, the parameters of the pro- posed PI model are identified. Then the hysteresis model of the micro-gripper is established. Experimental results in- dicate that in the maximum displacement range of 15.2 μm,the error range of the model is --0. 310~0. 156 μm. The proposed model can well deserihe the hysteresis characteristic of the micro-gripper.
出处 《压电与声光》 CAS CSCD 北大核心 2015年第4期650-654,共5页 Piezoelectrics & Acoustooptics
基金 国家自然科学基金资助项目(No.51175271) 教育部留学回国人员科研启动基金资助项目 浙江省高等学校中青年学科带头人学术攀登基金资助项目(No.Pd2013091)
关键词 压电微夹钳 迟滞模型 Prandtl-Ishlinskii(PI)模型 死区算子 piezoelectric micro-gripper hysteresis model PI model dead-zero operator
  • 相关文献

参考文献10

  • 1郝永平,董福禄,张嘉易,包丽雅.基于MEMS机构装配的微夹持器研究[J].中国机械工程,2014,25(5):596-601. 被引量:16
  • 2孙立宁,陈立国,荣伟彬,谢晖,刘延杰.面向微机电系统组装与封装的微操作装备关键技术[J].机械工程学报,2008,44(11):13-19. 被引量:8
  • 3崔玉国,孙宝元,董维杰,杨志欣.压电陶瓷执行器迟滞与非线性成因分析[J].光学精密工程,2003,11(3):270-275. 被引量:38
  • 4MA Y,ZHANG X,XU M,et al. Hybrid model based on Preisach and support vector machine for novel dual- stack piezoelectric actuator [J]. Mechanical Systefns and Signal Processing,2013,34(1) : 156-172.
  • 5RAKOTONDRABE M. Classical prandtl-ishlinskii modeling and inverse multiplicative structure to com- pensate hysteresis in piezoactuators[J]. Proceedings of the 2012 IEEE International Conference on Ameri- can Control Conference (ACC), 2012 : 1646-1651.
  • 6JUHASZ L, MAAS J, BOROVAC B. Parameter identi- fication and hysteresis compensation of embedded pie- zoelectric stack actuators [J]. Mechatronics, 2011,21 (1): 329-338.
  • 7XU Q, LI Y. Dahl model-based hysteresis compensa- tion and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation[J]. Jour- nal of dynamic systems, measurement, and control, 2010,132(4): 041011.
  • 8CHEN C M,HSU Y C,FUNG R F. System identifica- tion of a Scott-russell amplifying mechanism with off- set driven by a piezoelectric actuator [J]. Applied Mathematical Modelling, 2012,36 ( 6 ) : 2788-2802.
  • 9KREJCI P, KUHNEN K. Inverse control of system with hysteresis and creep[J]. IEEE Proceedings-Con- trol Theory and Applications,2001,148(3) : 185-192.
  • 10王俐,饶长辉,饶学军.压电陶瓷微动台的复合控制[J].光学精密工程,2012,20(6):1265-1271. 被引量:19

二级参考文献40

共引文献69

同被引文献40

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部