期刊文献+

基于多层次QTM的球面Voronoi图生成算法 被引量:3

Multi-level QTM Based Algorithm for Generating Spherical Voronoi Diagram
原文传递
导出
摘要 随着格网层次的增大,基于全球离散格网的球面Voronoi图生成算法的格网数据量与Voronoi图生成时间都呈指数增长,在高层次时容易出现算法效率较低,甚至内存溢出无法执行等情况。利用球面四元三角格网的层次性,提出了一个基于多层次QTM的球面Voronoi图生成算法。首先用全球低层次QTM格网生成Voronoi图,然后对Voronoi边界格网进行再次剖分,得到下一层次的Voronoi图,重复进行,直至达到目标层次。实验结果表明,相对于单一层次的确定归属算法和扩张算法,该算法能够生成更高层次的Voronoi图,且效率较前两者分别提高了22倍和25倍(第9层)。 A spherical Voronoi diagram of point sets,line sets and area sets can be well handled by GDG-based(GDG:Global Discrete Grid)algorithms.However,the grid data volume and the time consumed for generating spherical Voronoi diagrams increases exponentially with the growth of the GDG levels,which leads to lower efficiency at higher levels.To overcome these deficiencies,a multilevel QTM-based(QTM:Quaternary Triangular Mesh)algorithm is proposed.Firstly,a spherical Voronoi diagram is generated in a lower level.Then,the triangles that form the Voronoi boundaries are subdivided to get Voronoi diagrams at higher levels.The results show that a spherical Voronoi diagram of higher levels can be generated by this algorithm more efficently than those single-level algorithms;as it was improved about 22 and 25times at Level 9.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2015年第8期1111-1115,1122,共6页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41171306 41171304)~~
关键词 球面Voronoi图 全球离散格网 四元三角网 多层次 邻近搜索 spherical Voronoi diagram global discrete grid quaternary triangular mesh multi-level neighbor searching
  • 相关文献

参考文献19

  • 1闫浩文,王邦松.地图点群综合的加权Voronoi算法[J].武汉大学学报(信息科学版),2013,38(9):1088-1091. 被引量:26
  • 2王中辉,闫浩文.基于方向Voronoi图模型的群组目标空间方向关系计算[J].武汉大学学报(信息科学版),2013,38(5):584-588. 被引量:17
  • 3胡玮,陶伟东,苑振宇,王结臣.一种Voronoi图的扫描地图矢量化方法[J].武汉大学学报(信息科学版),2013,38(4):470-474. 被引量:7
  • 4Chen J, Zhao X,Li Z. An Algorithm for the Gener- ation of Voronoi Diagrams on the Sphere Based on QTM[J]. Photogrammetric Engineering ~ Remote Sensing, 2003, 69 (1)~:79-89.
  • 5Augenbaum J M, Peskin C S. On the Construction of the Voronoi Mesh on a Sphere[J]. Journal of Computational Physics, 1985, 59(2) : 177-192.
  • 6Robert J, Renka R. Delaunay Triangulation and Voronoi Diagram on the Surface of a Sphere[J]. ACM Transactions on Mathematical Software, 1997, 23(3) :416-434.
  • 7Ma Y, Chen Q. Fast Delaunay Triangulation and Voronoi Diagram Generation on the Sphere[C]. The Second World Congress on Software Engineering, Wuhan, China, 2010.
  • 8Dinis J, Mamede M. Sweeping the Sphere [C]. 2010 International Symposium on Voronoi Diagrams in Science and Engineering, Quebec, Canada, 2010.
  • 9Hyeon-Suk N, Chung-Nim L, Otfried C. Voronoi Diagrams on the Sphere[J]. Computation Geome- try: Theory and Applications, 2002, 23(2)..183- 194.
  • 10Christopher G, Mir A M. Towards the Global GIS [J]. ISPRS Journal of Photogrammetry 8~ Re- mote Sensing, 2000, 55(3) ~ 150-163.

二级参考文献74

共引文献69

同被引文献28

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部