期刊文献+

PSE方法研究平板边界层中三波共振的非线性作用机制

The PSE approach to study the nonlinear evolution of three-dimensional disturbances in incompressible boundary layers on flat-plate
下载PDF
导出
摘要 用抛物化稳定性方程(PSE)方法数值模拟了实验中三波共振中三维扰动的非线性作用情况,得到的计算结果与实验数据在定量上比较相符。研究表明扰动演化的定性行为与理论描述的结果是一致的,即二维波在初始阶段和参数共振阶段按照线性指数增长,三维波在初始阶段同样按照线性指数增长。在非线性作用比较强时,三维波快速增长起来,最终作用在二维波上,使其再次增长起来,从而引起转捩。 The study of the nonlinear evolution of three-dimensional disturbances in the boundary layers has a great theoretical research significance to the hydrodynamic stability. PSE method is adopted to study the subharmonic resonance in the experiment, and comparison be- tween PSE results and experimental data is presented. The numerical results by PSE match the experiment results basically in quantitatively. In the qualitative comparison, the plane wave ex- periences a linear exponential growth in the beginning stage and parametric-resonance stage, and the subharmonic oblique waves also experience a linear exponential growth in the initial stage. However, when the nonlinear effects is relatively strong, the subharmonic oblique waves experi- ence a super exponential growth that is faster than the exponential growth predicted by the linear theory, and stmulate the plane wave to make it increase again. This result is a consistent with the theoretical descriotion.
作者 张丽
机构地区 天津大学力学系
出处 《空气动力学学报》 CSCD 北大核心 2015年第4期441-445,共5页 Acta Aerodynamica Sinica
关键词 三波共振 PSE方法 参数共振 非线性作用 转捩 subharmonic resonance PSE approach resonant-triad resonance nonlinear evo- lution transition
  • 相关文献

参考文献12

  • 1Klebanoff P S, Tidstrom K D, Sargent L M. The three-dimen- sional nature of boundary-layer instability[J]. J. Fluid Mech. , 1962, 12: 1-34.
  • 2Saric W S, Thomas A S W. Experiments on the subharmonic route to turbulence in boundary layers[J]. Turbulence and Cha- otic Phenomena in Fluids, 1984: 117-122.
  • 3Kaehanov, Yu S, Levehenko V Ya. The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer [J]. J. Fluid Mech. , 1984, 138: 209-247.
  • 4Corke T C, Mangano R A. Resonant growth of three-dimen- sional modes in transitioning Blasius boundary layers[J]. J. Fluid Mech. , 1989, 209: 93-150.
  • 5Zelman M B, Maslennikova I I. Tollmien-Schlichting-wave res- onant mechanism for suhharmonic-type transition[J]. J. Fluid Mech. , 1993, 252: 449-478.
  • 6Sayadi T, Hamman C W, Moin P. Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers[J]. J. Fluid Mech. , 2013, 724: 480-509.
  • 7Herbert T. Subharmonic three-dimensional disturbances in un- stable plane shear flows[R]. AIAA-83-1759, 1983.
  • 8Herbert T. Secondary instability of boundary layers[J].Ann. Rev. Fluid Mech. , 1988, 20: 487-526.
  • 9Mankbadi R R. Critical-layer nonlinearity in the resonance growth of three-dimensional waves in boundary layer[R]. 1990, NASA TM-103639.
  • 10Mankbadi R R, Wu X, Lee S S. A critical-layer analysis of the resonant-triad in boundary-layer transition: nonlinear interac- tions[J]. J. Fluid Mech. , 1993, 256: 85-106.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部