期刊文献+

自适应抗噪的清/浊/静音判决算法

Adaptive anti-noise unvoiced / voiced / silence detection algorithm
下载PDF
导出
摘要 清/浊/静音判决(UVS)是语音压缩、合成以及识别中的一个重要参数。为了解决传统判决方法训练过程复杂,导致语音编码效率低的问题,给出一种无训练过程的判决方法。提取基于循环平均幅度差的特征参量,利用判决参数间的相关性,自适应调整阈值,实现清/浊/静音判决。该判决方法具有很好的抗噪声干扰能力,有效提高判决的准确率。测试结果表明:该算法简化了清/浊/静音判决的计算量,清音误判率降低了10%,浊音误判率保持在4%以内;将该算法应用于低速率语音编码方案MELP(mixed excitation linear prediction)0.6 kbps的清浊音判决中,解码后的合成语音质量优于原始MELP编码方案,PESQ分数提高0.3,具有较好的可懂度和自然度。 The Unvoiced/ Voiced/ Silence detection UVS provides a preliminary acoustic segment which is a key parameter in speech compression synthesis and recognition.The complication of traditional UVS methods?? training procedure causes low efficiency of speech vocoder.To solve this problem a UVS detection without training proceeding is proposed in this paper.After new characteristic parameters of unvoiced and voiced signal are extracted adaptable threshold is proposed based on the correlation of those parameters.With its perfect an?ti?noise ability the correct rate of this detection improves sharply.The simulation result shows that this algorithm not only simplifies the unvoiced/ voiced/ silence detection but also efficiently decreases 10% of unvoiced and maintains lower than 4% of voiced discrimination error.The improved 0.6 kbps MELP vocoder applying this detection algorithm gets a 0.3 higher PESQ score and better synthetic speech performance compared with original vocoder which produces good natural and intelligible speech.
出处 《燕山大学学报》 CAS 北大核心 2015年第2期133-138,共6页 Journal of Yanshan University
基金 国家自然科学基金资助项目(61271248)
关键词 模式识别 清/浊/静音判决 自适应阈值 低信噪比 低速率语音编码 pattern recognition unvoiced/voiced/silence detection adaptive threshold low SNR low bit-rate speech coding
  • 相关文献

参考文献21

  • 1HUANG CHIEN-UN, MATSUDA S, HORI C. Feature nonnalization using MVAW processing for spoken language recognition [C]//2013 Asia-Pacific Signal and Infonnation Processing Association Annual Summit and Conference, Kaohsiung, Taiwan, 2013: 1-4.
  • 2WU BING-FEI, WANG KUN-CHING.Robust endpoint detection alg0- rithm based on the adaptive band-partitioning spectral entropy in adverse environments [J] .IEEE Transactions on Speech and Audio Processing, 2005, 13{ 5) : 762- 775.
  • 3Wu Gin-Der, Huang Pang-Hsuan.A vectorization-optimization-method based type- 2 fuzzy neural network for noisy data classification [J]. IEEE Transactions on Fuzzy Systems, 2013, 21( 1): 1-15.
  • 4CHOMORIlG, ZHANG ZE. Research on endpoint detection for mongolian speech based on support vector machine [C]/ 12011 International Conference on Intelligence Science and Information Engineering, Wuhan, China, 2011: 290-294.
  • 5VUPPALA A K, YADAV 1, CHAKRABARTI S, et aI.Vowel onset point detection for low bit rate coded speech [J].IEEE! ACM Transactions on Audio, Speech, and language Processing.2012, 20( 6) : 1894- 1903.
  • 6MING J, HAZEN T J, GLASS J R, et aI.Robust speaker recognition in noisy conditions [J] . IEEE! ACM Transactions on Audio, Speech, and Language Processing, 2007, 15( 5): 1711-1723.
  • 7LASKOWSKI K.Contrasting emotion-bearing laughter types in multiparticipant vocal activity detection for meetings [CJIIIEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 2009: 4765-4768.
  • 8SHAO C, BOUCHARD M.Efficient classification of noisy speech using neural networks [C]IISeventh International Symposiun on Signal Processing and Its Applications, 2003: 357-360.
  • 9XU HAmAN, DAI.SGAARD P, TAN ZHENG-HUA, et aI.Noise condition-dependent training based on noise classification and SNR estimation [J]. IEEE! ACM Transactions on Audio, Speech, and Language Processing,2007,15 (8):2431-2443.
  • 10BERlTElli F, CASALE S, SERRANO S.Adaptive V/UV speech detection based on acoustic noise estimation and classification [J] .Elec- Ironies Letters, 2007,43( 4): 249-251.

二级参考文献14

  • 1成新民,曾毓敏,赵力.一种改进的AMDF求取语音基音的方法[J].微电子学与计算机,2005,22(11):162-164. 被引量:16
  • 2刘建,郑方,吴文虎.基于幅度差平方和函数的基音周期提取算法[J].清华大学学报(自然科学版),2006,46(1):74-77. 被引量:22
  • 3A.V奥本海姆 黄建国等(译).离散时间信号处理[M].北京:科学出版社,1998..
  • 4杨行逡 迟惠生 等.语音信号数字处理[M].北京:电子工业出版社,1995..
  • 5Wolfgang Hess. Pitch Determination of Speech Signals [ M ]. New York: Springer-Verlag, 1983.
  • 6Ross M J, et al. Average magnitude difference function pitch extractor[J]. IEEE Trans on Acoustics, Speech, and Signal Processing, 1974,22(5) :353 - 362.
  • 7Thomas W Parsons. Voice and Speech Processing [ M]. New York:Mc-Graw-Hill, 1986.
  • 8ROSS M J,SHAFFER H L,COHEN A,et al.Average magnitude difference function pitch extractor[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1974,22(5):353-362.
  • 9顾良,刘润生.高性能汉语语音基音周期估计[J].电子学报,1999,27(1):8-11. 被引量:19
  • 10宗源,曾毓敏,孙永熙,郑瑞.基于EMD的AMDF基音检测改进算法[J].南京师范大学学报(工程技术版),2013,13(1):62-67. 被引量:6

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部