期刊文献+

基于OLS-RBF神经网络的进场飞行时间预测 被引量:7

Arrival Flight Time Prediction Based on OLS-RBF Neural Networks
下载PDF
导出
摘要 航空器预计到达时刻(ETA)是航空器进场排序与调度的基础,因此进场航空器飞行时间的快速与准确预测显得尤为重要。基于历史雷达轨迹分析,通过RBF(Radial Basic Function)神经网络构建进场航空器进港时的高度、速度、进场飞行距离与进场飞行时间的映射关系,利用正交最小二乘算法设计基于RBF神经网络的进场飞行时间预测模型。以上海浦东机场VMB进港点进场航班为例进行仿真验证,在考虑航空器机型的情况下,可将航空器飞行时间预测的均方根误差控制在50 s以内。仿真结果表明,提出的方法能够有效地实现进场飞行时间的快速与准确预测。 Estimated Time of Arrival (ETA) plays a great role in arrival sequencing and scheduling, therefore it is particularly important to predict the arrival flight time quickly and accurately. Based on the analysis of historical radar track, with the help of RBF (Radial Basic Function) Neural Network, the map- ping relationship is constructed between the arrival aircraft's altitude/speed at the metering point, flight distances and flight time. And then, the orthogonal least squares (OLS) algorithm is adopted to design the RBF- NN based arrival flight time prediction model. Taking the arrival aircrafts via VMB to Shanghai Pud- ong Airport as examples, the RMSE between estimated and actual time of arrival is controlled within 50 s with consideration of the same aircraft type. The simulation results indicated that the proposed approach is able to predict arrival flight time quickly and accurately.
出处 《航空计算技术》 2015年第4期42-45,共4页 Aeronautical Computing Technique
基金 国家自然科学基金项目资助(71401072) 江苏省自然科学基金项目资助(BK20130814) 中央高校基本科研业务费专项资金项目资助(NS2013064) 南京航空航天大学研究生创新基地开放基金资助项目(kfjj201446)
关键词 RBF神经网络 正交最小二乘 飞行时间预测 预计到达时间 RBF neural network orthogonal least squares flight time prediction ETA
  • 相关文献

参考文献10

  • 1Chandrasekar S, Hwang I. Algorithm for Optimal Arrival and Departure Sequencing and Runway Assignment [ J ]. Journal of Guidance, Control and Dynamics, 2015,38 (4) : 601 - 613.
  • 2Hwang I, Liu W Y. Probabilistic Trajectory Prediction and Conflict Detection for Air Traffic Control [ J ]. Journal of Guidance, Control and Dynamics, 2011,34 ( 6 ) : 1779 - 1789.
  • 3张军峰,隋东,汤新民.基于状态相关模态切换混合估计的航迹预测[J].系统工程理论与实践,2014,34(11):2955-2964. 被引量:13
  • 4EUROCONTROL EXPERIMENTAL CENTER. User Manual for the Base of Aircraft Data (BADA) ,Revision 3.12[ R]. EEC Technical Report No. 12/04,2014.
  • 5FAA ,EUROCONTROL. Common Trajectory Prediction Strue- ture and Terminology in Support of SESAR & NextGen[ R]. FAA/EUROCONTROL AP 16,2010.
  • 6张军峰,蒋海行,武晓光,汤新民.基于BADA及航空器意图的四维航迹预测[J].西南交通大学学报,2014,49(3):553-558. 被引量:38
  • 7Le Fablec Y, Alliot J M. Using Neural Networks to Predict Aircraft Trajectories [ C ]//Las Vegas, USA : The International Conference on Artificial Intelligence ( IC - AI ), 1999 : 524 - 529.
  • 8Hamed M G, Gianazza D, Serrurier M, et al. Statistical Pre- diction of Aircraft Trajectory:Regression Methods vs Point- mass Model[ C]//Chicago,USA:ATM 2013,2013.
  • 9Kaidi R, Lazaar M, Ettaouil M. Neural Network Apply to Pre- dict Aircraft Trajectory for Conflict Resolution [ C]//Intelli- gent Systems :Theories and Applications ( SITA - 14 ) , 2014 9th International Conference on IEEE,2014:1 -6.
  • 10Tastambekov K, Puechmorel S, Delahaye D, et al. Aircraft trajectory Forecasting using Local Functional Regression in Sobolev space [ J ]. Transportation Research Part C : Emer- ging Technologies ,2014,39 : 1- 22.

二级参考文献34

  • 1RUIZ S, PIERA M, POZO I. A medium term conflict detection and resolution system for terminal maneuvering area based on spatial data and 4D trajectories[J]. Transportation Research: Part C, 2013, 26 : 396-417.
  • 2HANCERLIOGULLARI G, RABADI G, AL-SALEM A H, et al. Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem[J]. Journal of Air Transport Management, 2013, 32: 39-48.
  • 3ZuNIGA C A, PIERA M A, RUIZ S. A CD&CR causal model based on path shortening/path stretching techniques[ J ]. Transportation Research : Part C, 2013, 33: 238-256.
  • 4SCHROEDER J A. A perspective on NASA Ames air traffic management research[ C ] // 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO). [S.l. ] : AIAA, 2009: 7054-1-7054-16.
  • 5BAR-SHALOM Y, LI X R. Estimation with applications to tracking and navigation: theory algorithms and software[ M]. [ S. l. ] : John Wiley Sons, Inc., 2001 : 466-476.
  • 6HWANG I. Air traffic surveillance and control using hybrid estimation and protocol-based conflict resolution [ D ]. Stanford : Stanford University, 2003.
  • 7SEAH C E, HWANG I. State estimation for stochastic linear hybrid systems with continuous-state-dependent transitions: an IMM approach[J]. IEEE Transactions on Aerospace and Electronics Systems, 2009, 45 ( 1 ) : 376-392.
  • 8SEAH C E, HWANG I. Algorithm for performance analysis of the IMM algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47 ( 2 ) : 1114-1124.
  • 9FUKUDA Y, SHIRAKAWA M, SENOGUCHI A. Development of trajectory prediction model [ C ]//ENRI International Workshop on ATM/CNS (EIWAC). Tokyo: [s. n. ], 2010: 95-100.
  • 10FAA, Eurocontrol. Common trajectory prediction structure and terminology in support of SESAR & NextGen[R]. Bretigny: EEC, 2010.

共引文献43

同被引文献37

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部