期刊文献+

基于项目属性预测的协同过滤推算法 被引量:1

Collaborative Filtering Algorithm Based on Project Property Prediction
下载PDF
导出
摘要 协同过滤技术是推荐系统中运用成功、广泛采用的推荐算法,但其在计算项目相似性需要依靠用户的历史评分数据。基于此,本文提出了利用项目自身属性进行项目分类,然后在类内寻找最近邻居,最后产生推荐。实验结果表明,该算法提高了数据稀疏情况下的推荐质量,同时还提高了推荐系统的效率。 Collaborative filtering is the most successful and extensively used recommendation algorithm in the existing recommendation systems which rely on the users' historical rating data to calculate the project similarity. In view of this, this paper proposes the project categorization by their own properties, and then finding the most adjacent in the class to produce the recommendation. Experimental resuits show that the algorithm not only improves the recommendation quality with insufficient data, but also the efficiency of recommendation system.
出处 《洛阳理工学院学报(自然科学版)》 2015年第3期57-60,70,共5页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
基金 国家科技支撑计划资助项目(2012BAH20F05) 甘肃省自然科学基金(1310RJZA056) 兰州交通大学青年基金(2013016) 兰州交通大学青年基金资助项目(2011012)
关键词 项目属性 协同过滤 推荐系统 project property collaborative filtering recommendation system
  • 相关文献

参考文献8

二级参考文献46

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 3张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 4[1]Breese J,Hecherman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[A].Proceed ings of the 14th Conference on Uneertainty in Artifical Itelligence(UAI-98)[C].New York:ACM Press,1998:43 -52.
  • 5[2]Akira Sato,Takahisa Ando,Hiroya Inakoshi,et al.Personalization System based on Dyanamic Learning[J].Journal of the Royal Statistical Society,1997,38(1):44-59.
  • 6[3]Stawar B,Karypis G,Konstan J,et al.Item-Based Collaborative Filtering Recommendation Algorithms[A].Proceed ings of the Tenth International World Wide Web Conference[C].Paris:IEEE Computer Society Press,2001:285 -295.
  • 7[4]Yu Li,Liu Lu,LiXuefeng.A Hybid Collaborative Fitering Method for Multiple-Interests and Multiple Content Recommendation in E-Commerce[J].Expert Systems with Applications,2005,28(1):67 -77.
  • 8[5]Starwar,G Karypis,J Konstan,et al.Item-Based Collaborative Filtering Recommendation Algorithms[A].Proc of the 10th Int,l World Wide Web Conf[C].New York:ACM Press,2001:285-295.
  • 9Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 10Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.

共引文献636

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部