期刊文献+

非线性H_∞导引律设计与分析 被引量:1

Design and Analysis of Nonlinear H_∞ Guidance Law
下载PDF
导出
摘要 针对导弹拦截目标制导过程中的测量噪声和干扰以及未知目标机动,本文提出了具有严格解析形式的三维非线性H∞导引律的设计方法。通过构建基于改进极坐标系下的三维弹目相对运动方程和存在多种测量噪声和干扰下的弹目相对运动方程,归纳推导出简洁的导弹拦截目标的系统方程;利用非线性H∞控制理论构造相应的HJI偏微分方程不等式,并且提出了HJI偏微分方程不等式的一种解法,得到了一组解析解,同时得到了拦截系统的一个正定储能函数,进而构造了非线性H∞导引律;通过分析非线性H∞导引律的设计方法和几项关键的制导拦截影响因素,定性指出了如何调整设计参数能够有效对抗各种不利因素,提高制导性能;最后,仿真研究验证了非线性H∞导引律的有效性和定性分析的有效性。 An analytical three-dimensional nonlinear H∞ guidance law is designed for coping with measurement noise and disturbance and unknown target maneuvering in the process of a missile intercepting an attacking target. By building a three-dimensional relative motion equation between the missile and the target in the modified polar coordinate and a relative motion equation between the missile and the target involving many types of measurement noise and disturbance, a simplified system equation of the missile intercepting the target is deduced. Then the corresponding HJI partial differential inequality is constructed by using nonlinear control theory. And then a solution method of HJI partial differential inequality is offered. Thus a set of analytical solutions and a positive definite storage function are obtained, and then the analytical three-dimensional nonlinear H∞ guidance law is designed successfully. By analyzing the relationship of the design parameters of nonlinear H∞ guidance law and several key interception factors of guidance, the analysis qualitatively points out that how to adjust design parameters can deal with a variety of adverse factors and improve guidance performance further more. Finally, simulation results verify the effectiveness of the proposed guidance law and the effectiveness of the qualitative analysis.
出处 《宇航学报》 EI CAS CSCD 北大核心 2015年第8期932-939,共8页 Journal of Astronautics
基金 国家自然科学青年基金(61304110 61301008) 航空科学基金(20140768003)
关键词 导引律 非线性H∞控制 简化的弹目相对运动方程 目标机动 HJI偏微分方程 Guidance Law Nonlinear H∞ control Simplified relative motion equation of missile intercepting target Target maneuvering H∞partial differential equation
  • 相关文献

参考文献16

  • 1Gutman S. Applied min-max approach to missile guidance and control [ R]. AIAA: Progress in Astronautics and Aeronautics, Vol. 209, 2005.
  • 2Shneydor N A. Missile guidance and pursuit: kinematics, dynamics and control [ M ]. Cambridge: Wood Publishing Limited. 1998.
  • 3Yang C D, Yang C C. A Unified approach to proportional navigation [ J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(2): 557-567.
  • 4Tyan F. Unified approach to missile guidance laws a 3D extension [ J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41 (4) :1178 - 1199.
  • 5朱竹婷,廖增,彭程,王永.一种分数阶修正比例导引律[J].控制理论与应用,2012,29(7):945-948. 被引量:3
  • 6Kada B. Arbitrary-order sliding-mode-based homing-missile guidance for intercepting highly maneuverable targets [ J ]. Journal of Guidance, Control, and Dynamics, 2014, 37 (6) : 1 -15.
  • 7周狄.寻的导弹新型导引规律[M].北京:国防工业出版社.2002:8-14.
  • 8Liang Y W, Chen C C, Liaw D C, et al. Robust guidance law via integral-sliding-mode scheme [ J ]. Journal of Guidance, Control, and Dynamics, 2014, 37 (3) : 1038 - 1042.
  • 9严晗,季海波.弹道坐标中三维鲁棒非线性导引律[J].控制理论与应用,2013,30(9):1079-1085. 被引量:5
  • 10Liu L J, Shen Y. Three-dimension H∞ guidance law and capture region analysis [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48( 1 ) : 419 -429.

二级参考文献79

  • 1王钊,李世华,费树岷.非奇异终端滑模导引律[J].东南大学学报(自然科学版),2009,39(S1):87-90. 被引量:12
  • 2张靖男,赵兴锋,郑志强,黄柯棣.战术导弹制导律设计[J].航空兵器,2006,13(3):3-6. 被引量:4
  • 3左斌,李静,胡云安.一种攻击大机动目标的变参数组合导引律[J].飞行力学,2007,25(2):46-49. 被引量:2
  • 4Zarchan P. Tactical and Strategic Missile Guidance[M]. AIAA Inc, 1997.
  • 5Nesline F W, Zarchan P. A new look at classical versus modem homing guidance[ J ]. Journal of Guidance and Control, 1981, 4(1) : 78 - 85.
  • 6Speyer J L, Kevin D, Minjea Tahk. Passive homing missile guidance law based on new target maneuver models[J]. AIAA Journal of Guidance, Control and Dynamics, 1990, 13(5): 803- 812.
  • 7Song T L. Observability of target tracking with bearings - only measurements [ J ]. IEEE Trans. Aerospace and Electronic Systems, 1996, 32(4): 1268-1472.
  • 8Khalil H K. High-gain Observers in Nonlinear Feedback Control [M ]. Lecture Notes in Control and Information Sciences, Pringer Berlin/Heidelberg, 244, 1999, 249- 268.
  • 9Atassi A N, Khalil H K. A separation principle for the stabilization of a class of nonlinear systems [ J ]. IEEE Trans. Auto. Contr., 1999, 44(9) : 1672 - 1687.
  • 10Freidovich L B, Khalil H K. Performance recovery of feedback-linearization-based designs[J]. IEEE Trans. Auto. Contr., 2008, 53 (10) : 2324 - 2334.

共引文献73

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部