期刊文献+

靶向VEGFR2光声/超声双模态造影剂的制备及体外寻靶实验研究 被引量:6

Preparation of VEGFR2-targeted photoacoustic/ultrasound dual-mode contrast agent and its targeting study in vitro
下载PDF
导出
摘要 目的制备一种特异性靶向新生血管内皮细胞的光声/超声双模态造影剂,探讨其体外寻靶能力及双模态显影效果。方法采用多步乳化法制备载有印度墨水和液态氟碳的高分子造影剂,用碳二亚胺法将造影剂与抗血管内皮生长因子受体2(VEGFR2)单克隆抗体相偶联,制备出靶向VEGFR2高分子造影剂(Vi-PFH-PLGA)。检测该造影剂的一般特性、体外寻靶能力及双模态显影效果,并与非靶向高分子造影剂进行比较。结果所制备的靶向高分子造影剂的平均粒径为(565.5±15.6)nm,间接免疫荧光法观察到抗体成功的连接到造影剂表面,流式细胞仪测得抗体微球连接率为99.72%,体外寻靶能力实验显示较多的靶向造影剂呈花环状牢固的聚集在人脐静脉内皮细胞HUVEC表面,而非靶向组和抗体干预组未见造影剂与HUVEC的特异性结合。体外光声/超声显影实验显示,经脉冲激光辐照后,靶向造影剂组可检测到明显的光声信号和超声信号,与非靶向造影剂相比差异无统计学意义(P均>0.05)。结论成功制备出靶向VEGFR2的光声/超声双模态造影剂,该造影剂在体外与HUVEC细胞具有较强的靶向结合能力且具备较好的光声/超声双模态显影效果。 Objective To prepare a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted photoacoustic/ultrasound dual-mode contrast agent, investigate its targeting and dual-mode imaging capability in vitro. Methods Targeted agent loaded with India ink and perfluorohexane were prepared by multi-emulsion technology and conjugated with VEGFR2 monoclonal antibody by EDC/NHS. Its physicochemical properties, targeting capability, and photoacoustic/ultrasound imaging were observed, with non-targeted agent acted as controls. Results The nanoparticles were uniform and stabilized with size about (565.5±15.6)nm. The conjugation of nanoparticles with antibody was demonstrated by indirect immun- ofluoreseence assay and its binding rate was reach up to 99.72%. In the in vitro targeting study, it showed that a number of targeted nanoparticles conjugated and crowded around the human umbilical vein endothelial cells (HUVEC) tightly, while no specific binding was found in the non-targeted group and free antibody intervention group. After the pulsed laser irradiation, strong photoacoustic and ultrasound signals were obviously detected, with no statistical significance between the targeted and non-targeted group. Conclusion The VEGFR2-targeted photoacoustic/ultrasound dual-mode contrast was prepared successfully, which could targeted to HUVEC specially and enhanced photoacoustic/ultrasound imaging significantly.
出处 《中国介入影像与治疗学》 CSCD 北大核心 2015年第9期554-558,共5页 Chinese Journal of Interventional Imaging and Therapy
基金 国家自然科学基金(81130025 81471713 81401423) 重庆高校创新团队建设计划(KJTD201303)
关键词 印度墨水 光声 双模态 靶向造影剂 India ink Photoacoustic Dual modality Targeted contrast agent
  • 相关文献

参考文献13

  • 1Freise AC, Wu AM. In vivo imaging with antibodies and engineered fragments. Mol Immunol, 2015,67(2):142-152.
  • 2Yao J, Xia J, Wang LV. Multiscale Functional and Molecular Photoacoustic Tomography. Ultrason Imaging, 2015 May 1. [Epub ahead of print].
  • 3Mier W, Mier D. Advantages in functional imaging of the brain. Front Hum Neurosci, 2015,9:249.
  • 4Ma T, Sun X, Cui L, et al. Molecular imaging reveals trastuzumab-induced epidermal growth factor receptor downregulation in vivo. J Nucl Med, 2014,55(6):1002-1007.
  • 5Lutz AM, Bachawal SV, Drescher CW, et al. Ultrasound molecular imaging in a human CD276 expression-modulated murine ovarian cancer model. Clin Cancer Res, 2014,20(5):1313-1322.
  • 6Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: Moving beyond vascular endothelial growth factor. Oncologist, 2015,20(6):660-673.
  • 7Kieran MW, Kalluri R, Cho YJ. The VEGF pathway in cancer and disease: Responses, resistance, and the path forward. Cold Spring Harb Perspect Med, 2012,2(12):a006593.
  • 8Barua A, Yellapa A, Bahr JM, et al. VEGFR2-Targeted ultrasound imaging agent enhances the detection of ovarian tumors at early stage in laying Hens, a preclinical model of spontaneous ovarian cancer. Ultrason Imaging, 2015,37(3):224-237.
  • 9Wang LV, Gao L. Photoacoustic microscopy and computed tomography: From bench to bedside. Annu Rev Biomed Eng, 2014,16:155-185.
  • 10Wang YH, Liao AH, Chen JH, et al. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy. J Biomed Opt, 2012,17(4):045001.

二级参考文献13

  • 1Unnikrishnan S, Klibanov AL. Microbuhbles as ultrasound con- trast agents for molecular imaging: Preparation and application. AJR Am J Roentgenol, 2012,199(2) :292-299.
  • 2Low PS, Henne WA, Doorneweerd I)D. Discovery and develop- ment of folic-acid based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Ace Chem Res, 2007, 41 (1) :120-129.
  • 3Parker N, Turk MJ, Westrick E, et al. Folate receptor expres-sion in carcinomas and normal tissues determined by a quantitative rad!oligand binding assay. Anal Biochem, 2005,338(2) : 284-293.
  • 4Diaz-Lopez R, Tsapis N, Fattal E. Liquid perfluorocarbons as contrast agents for ultrasonography and (19) F-MRI. Pharm Res, 20i0,27(1) :1-16.
  • 5Pisani E, Tsapis N, Galaz B, et al. Perfluorooctyl bromide poly- meric capsules as dual contrast agents for uhrasonography and magnetic resonance imaging. Adv Funct Mater, 2008, 18 (19) : 2963-2971.
  • 6Lee DE, Koo H, Sun IC, et al. Multifunetional nanopartieles for multimodal imaging and theragnosis. Chem Soc Rev, 2012, 41 (7) :2656-2672.
  • 7Rapoport NY, Kennedy AM, Shea JE, et al. Controlled and tar- geted tumor chemotherapy by ultrasound-activated nanoemul- sions/microbubbles: J Control Release, 2009,138(3):268-276.
  • 8Rapoport N, Nam KH, Gupta R, et al. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copoly- mer stabilized perfluorocarbon nanoemulsions. J Control Release, 2011,153(11):4-15.
  • 9Rapoport N. Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. Wiley Interdiseip Rev Nanomed Nanobiotechnol. 2012,4(5) :492-510.
  • 10Kocbek P, Obermajer N, Cegnar M, et al. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release, 2007,120(1-2) : 18-26.

共引文献8

同被引文献53

  • 1Hidekatsu Yanai,Sumie Moriyama.Elevated pancreatic enzymes, IgM, soluble interleukin-2 receptor in anti-GADab(+) type 1 diabetes[J].World Journal of Diabetes,2011,2(5):75-76. 被引量:1
  • 2许乙凯,刘岘,叶靖.二步法预定位技术对荷人肝癌裸鼠模型的MR免疫成像研究[J].中华放射学杂志,2005,39(4):357-361. 被引量:6
  • 3Huang P, Rong P, Jin A, et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy. Adv Mater, 2014,26(37) : 6401-6408.
  • 4Wang Y, Song D, Costanza F, et al. Targeted delivery of tanshi- none IIA-conjugated mPEG-PLGA-PLL-cRGD nanoparticles to hepatocellular carcinoma. J Biomed Nanotechnol, 2014, 10 (11) : 3244-3252.
  • 5Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered Gold nanostructures. Nanoscale, 2014, 6 ( 5 ): 2502-2530.
  • 6Xu G, Rajian JR, Girish G, et al. Photoacoustic and ultrasound dual-modality imaging of human peripheral joints. J Biomed Opt, 2013,18(1) :10502.
  • 7Lin J, Wang S, Huang P, et al. Photosensitizer-loaded Gold ves- icles with strong plasmonie coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano, 2013, 7 (6) : 5320-5329.
  • 8Peng J, Zhao L, Zhu X, et al. Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy. Biomaterials, 2013, 34 (32) :7905-7912.
  • 9Pekkanen AM, Dewitt MR, Rylander MN. Nanoparticle en- hanced optical imaging and phototherapy of cancer. J Biomed Nanotechnol, 2014,10(9) : 1677-1712.
  • 10Wang YH, Chen SP, Liao AH, et ai. Synergistic delivery of Gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy. Sci Rep, 2014,4 : 5685.

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部