期刊文献+

冷轧铜合金乳化液润滑模型及表面质量研究(英文) 被引量:3

Research of Lubrication Model and Surface Quality in Cold-Rolling Copper Alloy Using O/W Emulsions
原文传递
导出
摘要 根据平均流量模型和微凸体模型建立了冷轧铜合金混合润滑状态的理论模型。计算了使用不同运动粘度的乳化油,不同初始油相浓度的乳化液和在不同压下率条件下,轧制变形区的油相浓度,流动压力和接触面积。由计算结果可知,在冷轧过程中为使乳化液起到好的润滑作用和冷却效果,乳化油的运动粘度选在40-50 mm2/s之间,乳化液的初始油相浓度选在在0.02-0.05之间,道次压下率选择在30%。为进一步验证模型,利用四球摩擦磨损试验检测了乳化液的最大无卡咬负荷,确定乳化油的运动粘度和乳化液的初始油相浓度;通过观察轧后铜合金表面形貌确定轧制道次压下率,通过实验研究发现,实验结果和计算结果一致,验证了模型的准确性。乳化液润滑模型为轧制过程中乳化油运动粘度、乳化液初始油相浓度和道次压下率的选择提供了参考依据。 A theoretical model for cold-rolling copper alloy in mixed lubrication regime was developed based on the average volume flow model and asperity flattening model. The developed scheme was able to calculate oil concentration λd at any point within work zone, lubricant pressure, contact area ratio and film thickness ratio with different oil viscosity, pass reduction and the initial oil concentration λds. According to the lubrication model, for getting good lubrication and cooling effect of emulsions in rolling process, the rolling oil viscosity was selected in the range from 40 mm2/s to 50 mm2/s, the pass reduction about 30% and the initial oil concentration λds of emulsion in the range from 0.02 to 0.05. For verifying the lubrication model, the last nonseizure load was tested by the four-ball tests to confirm oil viscosity and initial oil concentration, and the rolled copper alloy surface topographies were analyzed to confirm pass reduction. The results show that the calculation data agree well with the measured data from experiment. They provide technical references for selecting rolling process parameters and emulsions.
机构地区 北京科技大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第8期1845-1850,共6页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(51274037) Key Projects in the National Science&Technology Pillar Program(2011BAE23B00)
关键词 乳化液 润滑模型 油相浓度 铜合金 表面质量 emulsions lubrication model oil concentration copper alloy surface quality
  • 相关文献

参考文献11

  • 1Igarashi Minoru, Imaizumi Sakae, Kanamori Hiroak et al. Journal of Japan Research Institute for Advanced Copper- Base Materials and Technologies[J], 2002, 41(1): 63.
  • 2Sun Jianlin, Xiao Tianguo, Kang Yonglin. Journal of University of Science and Technology Beijing[J], 2004, 11 (8):236.
  • 3Ma Liran, Luo Jianbin, Zhang Chenhui et al. Colloids and Surfaces .4: Physicochemical and Engineering Aspects[J], 2009, 340(1-3): 70.
  • 4Chen Un Chia, Liu Yushi, Chang Chongching et al. Tribology International[J], 2002, 35(5): 309.
  • 5Deepak Kumar, Jency Daniel, Biswas S K. Journal of Colloid andlnterface Science[J], 2010, 345(2): 307.
  • 6Yang H, Sehmid S R, Kasun T Jet al. Tribol Trans[J], 2004, 47:123.
  • 7Kosasih P B, Tieu A K. Tribology International[J], 2007, 40(5): 709.
  • 8Tieu A K, Kosasih P B, Godbole A. Tribology International[J], 2006, 39(12): 1591.
  • 9Liu Y J, Tieu A K. Journal of Materials Processing Technology[J], 2002, 130-131:202.
  • 10Nadir Patir, Cheng H S. Journal of Lubrication Technology[J], 1978, 100(1): 12.

同被引文献15

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部