期刊文献+

沉积物中声速和衰减系数的宽带测量方法 被引量:6

A wide-band method for sound speed and attenuation measurement in sediments
下载PDF
导出
摘要 海底沉积物作为海洋波导声传播的下边界普遍存在于大洋中,获知其特性对于准确的声传播和混响建模是十分必要的。为了能够快速而准确地测量沉积物中的声速和衰减系数,提出一种基于脉冲压缩技术的测量方法,对接收信号进行压缩来提取透射波,根据不同厚度样品的透射波来计算沉积物中的声速和衰减系数。该方法不仅可以克服实验过程中经常遇到的多途干扰,而且测量过程简单,可以同时获得测量频带内所有频点的声速和衰减系数,即实现了对声速和衰减系数的宽带测量。在实验室环境条件下,90~170kHz的测量频带内,测得沙样品中的声速为1710~1713m/s,衰减系数在56~70dB/m之间。通过窄带和宽带测量结果的比较可以看出,声速的宽带测量结果与窄带测量结果吻合得较好,而衰减系数在频带后半部分存在较大的起伏。 Marine sediments exist universally as the lower boundary for sound propagation in ocean waveguides, and knowledge of the properties of sediments is important for accurate modeling of sound propagation and reverberation. In order to measure sound speed and attenuation in sediments fast and accurately, a method based on pulse compression technique is proposed, where transmission wave is extracted from the received compressing signal. The sound speed and attenuation were measured according to transmission wave through different thicknesses of samples. This method not only can overcome unavoidable multi-path disturbance in experiment, but also can easily obtain the sound speed and attenuation for different frequencies in measured frequency band at the same time. That is, wide-band measurement for sound speed and attenuation is realized. In laboratory environment, the measured sound speed in the sand sample is 1710~1713 m/s and the attenuation is 56~70 dB/m in the frequency range of 90~170 kHz. Through the comparison of narrow and wide-band results, it is found that the sound speed measured by wide-band method agrees well with that of narrow-band method, while the attenuation exhibits large fluctuation at the second half of measured frequency band.
出处 《声学学报》 EI CSCD 北大核心 2015年第5期682-694,共13页 Acta Acustica
基金 国家自然科学基金(41330965 11274078)资助
关键词 海底沉积物 衰减系数 测量方法 宽带测量 声速 脉冲压缩技术 实验室环境 接收信号 Acoustic wave propagation Frequency bands Sediments Submarine geology Ultrasonic velocity measurement Wave transmission
  • 相关文献

参考文献25

  • 1Biot M A. Theory of propagation of elastic waves in a fluid- saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am., 1956; 28(2): 168-178.
  • 2Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range.J. Acoust. Soc. Am., 1956; 28(2): 179-191.
  • 3Plona T J. Observation of a second bulk compressional wave in porous media at ultrasonic frequencies. Appl. Phys. Left., 1980; 36(4): 259-261.
  • 4Jones C D, Plona T J. Acoustic slow waves and the con- solidation transition. J. Acoust. Soc. Am., 1982; 72(2): 556-565.
  • 5Wingham D J. The dispersion of sound in sediment. J. Acoust. Soc. Am., 1985; 78(5): 1757-1760.
  • 6Thorsos E I, Williams K L, Chotiros N P, et al. An Overview of SAX99: Acoustic Measurements. IEEE J. Ocean. Eng., 2001; 26(1): 4-25.
  • 7Zimmer M A, Bibee L D, Richardson M D. Measurement of the frequency dependence of the sound speed and at- tenuation of seafloor sands from I to 400 kHz. IEEE J. Ocean. Eng., 2010; 35(3): 538-557.
  • 8Zhou J X, Zhang X Z. Low-frequency geoacoustic model for the effective properties of sandy seabottoms. J. Acoust. Soc. Am., 2009; 125(5): 2847-2866.
  • 9李翠琳,Stan E Dosso,Hefeng Dong.根据非线性贝叶斯理论的界面波频散曲线反演[J].声学学报,2012,37(3):225-231. 被引量:11
  • 10张学磊,李整林,黄晓砥.一种地声参数的联合反演方法[J].声学学报,2009,34(1):54-59. 被引量:16

二级参考文献28

  • 1LIZheng-Lin ZHANGRen-He.A Broadband Geoacoustic Inversion Scheme[J].Chinese Physics Letters,2004,21(6):1100-1103. 被引量:17
  • 2张德明,李整林,张仁和.基于自适应时频分析的海底参数反演[J].声学学报,2005,30(5):415-419. 被引量:22
  • 3李整林,张仁和.Geoacoustic Inversion Based on Dispersion Characteristic of Normal Modes in Shallow Water[J].Chinese Physics Letters,2007,24(2):471-474. 被引量:14
  • 4Biot M A. Theory of propagation of elastic waves in a fluid- saturated porous solid. I. low-frequency range. J. Acoust. Soc. Am., 1956, 28(2): 168-178.
  • 5Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, ii. higher frequency range. J. Acoust. Soc. Am., 1956, 28(2): 179-191.
  • 6Stoll R D and Kan T K. Reflection of acoustic waves at a water-sediment interface. J. Acoust. Soc. Am., 1981,70(1): 149-156.
  • 7Camin H J, Isakson M J. A comparison of sediment reflec- tion coefficient measurements to elastic and poro-elastic models. J. Acoust. Soc. Am., 2006, 120(5): 2437-2449.
  • 8Chotiros N P, Lyons A P, J Osler and N G Pace. Normal incidence reflection loss from a sandy sediment. J. Acoust. Soe. Am., 2002, 112(5): 1831-1841.
  • 9Williams K L. An effective density fluid model for acous- tic propagation in sediments derived from Biot theory. J. Acoust. Soc. Am., 2001, 110(5): 2276-2281.
  • 10Lapinski A L S, Dosso S E. Bayesian geoacoustic inver- sion for the inversion techniques 2001 workshop. IEEE J. Ocean. Eng., 2003, 28(3): 380-393.

共引文献36

同被引文献32

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部