期刊文献+

一种改进的ISOMAP分类算法

AN IMPROVED ISOMAP CLASSIFICATION ALGORITHM
下载PDF
导出
摘要 传统的等距特征映射算法在降维时未考虑数据的类别标签,降维后不能够产生从高维到低维的映射矩阵,且不适用于多个类簇的情况,不能直接用于分类。针对这几个问题利用近邻元分析方法取代多维尺度分析法,并且引入特征向量作为输入矩阵,提出一种以分类为目的的等距特征映射算法(NC-ISOMAP)。降维时获取理想的低维投影矩阵,使降维后类间数据更加分开,类内数据更加紧凑。实验结果表明NC-ISOMAP算法能够取得很好的降维效果和分类性能,并在不同的数据集中有着较好的鲁棒性。 Traditional isometric feature mapping algorithm does not consider the classification labels of data when reducing the dimensionality,and cannot produce a mapping matrix ranging from high dimensions to lower dimensions after the dimensionality being reduced,and it cannot fit the situation of multi-class clusters as well,so it cannot be directly used for classification. In light of these problems,we use neighbourhood component analysis( NCA) to replace the multidimensional scaling analysis( MDS),introduce eigenvector as the input matrix,and propose an isometric feature mapping algorithm aiming at classification,called NC-ISOMAP. In the process of dimensionality reduction,NC-ISOMAP can obtain an ideal low dimensional project matrix,which makes the data become more separate between classes and more compact within a class after lowering the dimensionality. Experimental results show that NC-ISOMAP is able to achieve quite good dimensionality reduction result and classification performance,and has a better robustness in different datasets.
出处 《计算机应用与软件》 CSCD 2015年第8期43-46,55,共5页 Computer Applications and Software
关键词 流形学习 数据降维 等距特征映射 分类 监督学习 Manifold learning Dimensionality reduction Isometric feature mapping Classification Supervised learning
  • 相关文献

参考文献16

  • 1Orsenigo C, Vercellis C. Kernel ridge regression for out-of-sample map- ping in supervised manifold learning[ J]. Expert Systems with Applica- tions,2012,39(9) :7757 -7762.
  • 2Cavalcanti (i D C , Ren T 1,Pereira J F. Weighted Modular Image Prin-cipal Component Analysis for face recognilion[ J ]. Expert Systems withApplications,2013 :4971 -4977.
  • 3Conion P. Independent component analysis, a new concept. [ J ]. Sig-nal processing, 1994,36(3) :287 —314.
  • 4Cox T F,Cox M A A. Multidimensional scaling[ M]. CHC Press,2000.
  • 5Jacob Coldberger S R, Geoff Hinton R S. Neighbourhood components a-nalysis[ C]. Advances in Neural Information Processing Systems,2005 :513 -520.
  • 6刘丛山,李祥宝,杨煜普.一种基于近邻元分析的文本分类算法[J].计算机工程,2012,38(15):139-141. 被引量:10
  • 7Tenenhaum J B, De Silva V , I^ingford J C. A global geometric frame-work for nonlinear dimensionality reduction [ J ]. Science, 2000, 290(5500):2319-2323.
  • 8Roweis S T, Saul L K. Nonlinear dimensionality reduction by locallylinear embedding[ J]. Science,2000,290(5500) :2323 - 2326.
  • 9BacheK,UdhnianM- UCI Machine learning Repository[ OL] . 2013. ht-tp ://archive, ics. uci. edu/ml. Irvine.
  • 10Orsenigo C, Vercellis C, An effective double-bounded tree-connectedIsomap algorithm for microarray data classification [ J ]. Pattern Recog-nition Letters,2012,33(1):9 ~ 16.

二级参考文献61

  • 1Turk M, Pentland A. Eigenfaces for recognition[J]. J of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 2Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 3Tenenbaum J B, De Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
  • 4Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 5Choi H, Choi S. Robust kernel ISOMAP[J]. Pattern Recognition, 2007, 40(3): 853-862.
  • 6Zhao D F, Li Y. Incremental isometric embedding of high dimensional data using connected neighborhood graphs[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(1): 86-98.
  • 7Geng X, Zhan D C, Zhou Z H. Supervised nonlinear dimensionality reduction for visualization and classification[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B, 2005, 35(6): 1098-1107.
  • 8Cheng Q C, Wang H Y, Feng Y, et al. A multi-class multimanifold learning algorithm based on ISOMAP[C]. Proc of the lst CJK Joint Workshop on Pattern Recognition. New York: IEEE Press, 2009, 2: 813-817.
  • 9Olivetti&Oracle Research Laboratory. Oracle Research Laboratory Face The Olivetti & Database of Faces[EB/OL]. [2010-5]. http://www.cam-orl.co.uk/ facedatabase.html.
  • 10Yale University Face Database[EB/OL]. [2010-5]. http:// cvc. yale.edu/projects/yalefaces/yalefaces.html.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部