期刊文献+

一种基于海量数据重复聚类的信用卡评级方法 被引量:2

CREDIT CARD RATING BASED ON REPEAT CLUSTERING IN MASSIVE DATA
下载PDF
导出
摘要 对信用卡客户进行评级以提供更有针对性的服务是银行卡产业链的核心工作,对于银行以及银行卡组织有其重要的意义。目前,信用卡的评级工作多借助于对历史数据的观察和统计,人工决策参与程度高,信息利用率低下。利用信用卡交易记录得到的海量数据资源,使用基于传统方法改进的聚类算法对信用卡进行评级。改进的聚类方法通过重复迭代实现不同等级信用卡的最合适分离方案,并同时可以实现对高风险信用卡的规避,提高了信息利用率,并取得了较为理想的效果。 To rate cardholders so as to offer more specific services to them is the core work in bankcard industry chain,for banks and banknets this has the important significance. Currently the works of rating credit cards often fall back on the survey and statistics of historical data. People engage a lot in this process but use very little information of the data. We make use of the massive data gathered from credit cards transaction records,and rate the credit cards by clustering algorithm which is improved based on traditional methods. The improved clustering algorithm,through repeated iterations,realises the most appropriate separation scheme for the credit cards of different levels.Meanwhile it is able to circumvent those credit cards with high risks,and improves the information utilisation. Our work achieves desired results.
出处 《计算机应用与软件》 CSCD 2015年第8期80-83,87,共5页 Computer Applications and Software
基金 国家云计算示范工程项目(C73623989020220110006)
关键词 聚类 信用卡 评级 风险 Clustering Credit card Rating Risk
  • 相关文献

参考文献12

  • 1孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169. 被引量:2393
  • 2李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J].中国科学院院刊,2012,27(6):647-657. 被引量:1606
  • 3Howe D, Costanzo M, Key P, et al. Big data : the future of biocuration[J]. Nature,2008,455(4) :47 -50.
  • 4Fayyad U,Piatetsky-Shapiro G, Smyth P. The KDI) process for extrac-ting useful knowledge from volumes of data[ J ]. Communicalions of theACM,1996,39(4) :27 -34.
  • 5陈康,向勇,喻超.大数据时代机器学习的新趋势[J].电信科学,2012,28(12):88-95. 被引量:37
  • 6Sofie Verbaeten, Anneleen Van Assche. Enseml)lt* Methods for NoiseElimination in Classification Problems [ C ]. Multiple Classifier Sys-tems, 2003 ,Berlin :Springer,2003 :317 -325.
  • 7Blum A, Kalai A, Waaserman H. Noise-tolerant teaming, the parityproblem, and the statistical query model [ J ]. Journal of the ACM ,2003,50(4):506-519.
  • 8Ix)ng P M, Servedio R A. Random classification noise defeats all con-vex potential boosters [ C]//Pn>ceedings of the 25 (H international con-ference on machine learning, 2008, New York : ACM, 2008 : 608-615.
  • 9Xu R, Wunsch D. Survey of clustering algorithms [ J]. Neural Net-works, 2005,16(3):645 -678.
  • 10Anil K Jain. Data clustering: 50 years beyond K-means[ J ]. PatternRecognition Letters, 2010,31 (8) :651 —666.

二级参考文献197

  • 1Chris Anderson. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, 2008, 16 (7).
  • 2Albert-L~iszl6 Barab~isi. The network takeover. Nature Physics, 2012,8(1): 14-16.
  • 3Reuven Cohen, Shlomo Havlin. Scale-Free Networks Are U1- trasmall. Physical Review Letters, 2003, 90,(5 ).
  • 4Tony Hey, Stewart Tansley, Kristin Tolle (Editors). The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft, 2009 October 16.
  • 5Big Data. Nature, 2008, 455(7 209): 1-136.
  • 6Dealing with data. Science, 2011,331 ( 6 018 ): 639-806.
  • 7Complexity. Nature Physics, 2012, 8( 1 ).
  • 8Big Data. ERCIM News, 2012, (89).
  • 9David Lazer, Alex Pentland, Lada Adamic et al. Computational Social Science. Science, 2009, 323 ( 5 915 ): 721-723.
  • 10The 2011 Digital Universe Study: Extracting Value from Chaos. International Data Corporation and EMC, June 2011.

共引文献3787

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部