期刊文献+

基于监督学习的微博情感分类方法 被引量:3

SUPERVISED LEARNING-BASED MICROBLOGGING SENTIMENT CLASSIFICATION METHOD
下载PDF
导出
摘要 随着在线社交网络的快速发展,微博平台上聚集了大量的包含情感的主观句。微博情感可影响受众的观点形成,作用于商务智能、政策制定,甚至是股票市场。微博情感分类是指如何从微博中自动抽取出情感极性和不同的情感分类,如喜爱、愤怒、惊奇等。结合情感词汇本体和同义词词林,从微博中抽取不同类别的特征,运用监督学习方法进行情感分类,在学习过程中优化不同的模型,并分别进行误差和拟合分析,比较不同模型的性能。分类算法在NLP&CC 2013的评测任务中取得了具有竞争性的结果。 With the rapid development of online social networks,microblogging platforms gather a lot of subjective sentences which contains the sentiment. The sentiment in a microblog can affect the formation of audiences' opinion,and can act on business intelligence,policy development,and even the stock market. Microblogging sentiment classification refers to how to automatically extract the emotion polarity and different emotional categories,such as love,anger,surprise,etc,from microblogs. Combined with emotional lexicon ontology and synonymy thesaurus,we extracted the characteristics with different categories from microblogging text,and used the supervised learning method to classify the microblogging sentiment. Different models are optimised in learning process. The error analysis and fitting analysis are processed respectively as well,and the performances of different models are compared. This classification algorithm achieved competitive result in NLP CC 2013 evaluation task.
出处 《计算机应用与软件》 CSCD 2015年第8期238-242,共5页 Computer Applications and Software
基金 教育部人文社科一般项目(10YJC880076) 教育部人文社会科学专项任务项目(12JD710120 13JDSZ2084) 山东省自然科学基金项目(ZR2010FL008) 济南市科技局科技明星计划项目(2013010)
关键词 微博 情感分类 监督学习 情感词汇本体 同义词词林 Microblogging Sentiment classification Supervised learning Emotional lexicon ontology Synonymy thesaurus
  • 相关文献

参考文献18

  • 1Tsytsarau M, Palpanas T. Survey on mining subjective data on the web[J]. Data Mining and Knowledge Discovery, 2012, 24 ( 3 ) : 478-514.
  • 2徐琳宏,林鸿飞,潘宇,任惠,陈建美.情感词汇本体的构造[J].情报学报,2008,27(2):180-185. 被引量:389
  • 3Pang B, Lee L. Opinion Mining and Sentiment Analysis [ J ]. Found.Trends Inf. Retr.,2008,2(1 -2) :1 -135.
  • 4Zhou S,Chen Q,Wang X. Active deep learning method for semi-su-pervised sentiment classification[J]. Neurocomputing, 2013,120:536-546.
  • 5Pak A,Paroubek P. Twitter as a Corpus for Sentiment Analysis and O-pinion Mining[ C]. LREC,2010,17 -23,May 2010 ,Valletta,Malta.
  • 6孙艳,周学广,付伟.基于主题情感混合模型的无监督文本情感分析[J].北京大学学报(自然科学版),2013,49(1):102-108. 被引量:54
  • 7Zhai Z W, Xu H, Kang B D,et al. Exploiting effective features forchinese sentiment classification [ J ]. Expert Systems With Applica-tions, 2011,38(8) :9139-9146.
  • 8Xianghua F, Guo L, Yanyan G, et al. Multi-aspect sentiment analysisfor Chinese online social reviews based on topic modeling and HowNetlexicon[ J]. Knowledge-Based Systems, 2013,37 ;186 -195.
  • 9谢丽星,周明,孙茂松.基于层次结构的多策略中文微博情感分析和特征抽取[J].中文信息学报,2012,26(1):73-83. 被引量:199
  • 10张晶,朱波,梁琳琳,侯敏,滕永林.基于情绪因子的中文微博情绪识别与分类[J].北京大学学报(自然科学版),2014,50(1):79-84. 被引量:22

二级参考文献74

共引文献820

同被引文献34

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部