期刊文献+

基于支持向量机的车辆行为分析方法研究 被引量:4

Driving behavior analysis based on support vector machines for visual traffic surveillance
下载PDF
导出
摘要 随着我国经济的快速发展,汽车保有量以年均8%的速度增加,给人民出行带来便利的同时也带来了诸多的交通问题:交通事故频发,交通运载效率降低。统计结果表明这些问题主要是由驾驶员错误或违规的交通行为导致的。针对这些问题提出一套能够实时地对行驶车辆的驾驶行为进行监控和分析的方法,该方法由车辆检测、车辆跟踪、车辆行为分析3部分组成。研究中分别对每部分的算法进行了筛选和部分改进,手工绘制了车辆典型驾驶行为的行驶轨迹样本,并采用支持向量机(SVM)的机器学习方法进行了训练。实验表明该方法能够准确地对被监控车辆的行驶行为进行判断,从而实现对违规车辆的驾驶行为进行有效地监控。 With the rapid development of our economy, the number of automobiles is growing for 8% in every year , which brings people' s convenience , at the same time, which brings a lot of traffic problems. Traffic accident happened frequently, and traffic carry capacity became insufficient. Statistics result showed that one main reason was caused by driving behavior mistakes. In this paper, we will present a real-time method that can detect, track and analyze the driving vehicles' behaviors. The proposed method contains three parts, which are vehicle detection, vehicle tracking and driving behavior analysis. Each part' s algorithms were filtered and were improved separately , and I got the typical driving behavior sam- ple through hand-drawing vehicle' s travel path, and use Support Vector Machine (SVM) for machine learning Experimental results showed that it can accurately judge monitored vehicle' s driving behavior, and realize efficient surveillance for vehicles' the driving behavior who was in violation.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2015年第4期74-80,共7页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 云南省教育厅科研基金(501001) 留学基金委基金(2014(3033))资助项目
关键词 交通监控 驾驶行为分析 支持向量机 traffic surveillance driving behavior analysis support vector machines
  • 相关文献

参考文献8

  • 1JUNG Y K, HO Y S. A Feature-based vehicle tracking sys- tem in congested traffic video sequences [ C ] // Proc 2nd IEEE Pacific Rim Conference on Multimedia: Advances in Multimedia Information Processing. 2001 : 190 - 197.
  • 2LAI A H S,YUNG N H C. A fast and accurate scoreboard algorithm for estimating stationary backgrounds in an image sequence [ C ]//Proc IEEE Int Symp Circuits Syst. 1998,4: 241 - 244.
  • 3LAM W W L, PANG C C C, YUNG N H C. Highly accurate texture-based vehicle segmentation method [ J ]. Opt Eng SPIE ,2004,43 ( 3 ) :591 - 603.
  • 4NUMMIARO K, KOLLER-MEIER E, GOOL L V. An a- daptive color-based particle filter [ J ]. Image and Vision Computing,2003,21 ( 1 ) :99 - 110.
  • 5CHANG C, LIN C. LIBSVM: A library for support vector machines [ EB/OL]. [ 2008-10-29 ]. http: //www. csie. ntu. edu. tw/- cjlin/papers/libsvm, pdf.
  • 6ZHOU Shengyan, IAGNEMMA K. Self-supervised learning method for unstructured road detection using fuzzy support vector machines [ J/OL ]. [ 2015 -01-15 ]. http: //web. mit. edu/ mobility! publications/Zhou_Iagnemma_IROS_2010, pdf,2010.
  • 7董春利,董育宁.基于视频的车辆检测与跟踪算法综述[J].南京邮电大学学报(自然科学版),2009,29(2):88-94. 被引量:22
  • 8BEYMER D, MCLAUCHLAN P, COIFMAN B,et al. A real-time computer vision system for measuring traffic pa- rameters [ C ]//Proc IEEE Conference on Computer Vision and Pattern Recognition. 1997:495 -501.

二级参考文献31

  • 1陈永雷,胡云安,赵永涛.基于动态模板与位置预测的运动目标识别与跟踪[J].海军航空工程学院学报,2007,22(2):230-232. 被引量:8
  • 2袁基炜,史忠科.一种基于灰色预测模型GM(1,1)的运动车辆跟踪方法[J].控制与决策,2006,21(3):300-304. 被引量:14
  • 3TOMIZUKA M. An Intelligent Transportation System for the Next Century[J]. IEEE International Symposium on Industrial Electronics,1997(1) :1 -4.
  • 4JI Xiaopeng, WEI Zhiqiang. Effective Vehicle Detection Technique for Traffic Surveillance Systems [ J ]. Journal of Visual Communication and Image Representation,2006 ( 17 ) :647 - 658.
  • 5智能交通系统.国家智能交通系统工程技术研究中心网站[EB/OL].http://www.moc.gov.cn/05zhishi/zhinengys/t20051031_28392.htm.
  • 6WANG Y K,CHEN S H. Robust Vehicle Detection Approach[ C] // Proc IEEE Conference on Advanced Video and Signal Based Surveillance Como. Piscataway: IEEE,2005 : 117 - 122.
  • 7SEKI M, FUJIWARA H, SUMI K. A robust background subtraction method for changing background [ C ]//Proceeding of IEEE Workshop on Applications of Computer Vision. Piscataway:IEEE, 2000: 207 - 213.
  • 8COLLINS R, LIPTON A, KANADE T, A system for Video Surveillance and Monitoring[ C]//Proc of 8th International Topical Meeting on Robotics and Remote Systems. Pittsburgh: ANS, 1999:1 - 68.
  • 9HARALICK R M, LEE J S. The Facet Approach to Optical Flow [ C] fflmage Understating Workshop. Arlington : [ s. n. ], 1984:74 - 83.
  • 10HORPRASERT T, HARWOOD D, DAVIS L S. A Statistical Appproach for Real-time Robust Background Subtraction and Shadow Detection [ C ] //Proceedings of IEEE ICCV ' 99 Frame-Rate Workshop. Kerkyra: IEEE, 1999.

共引文献21

同被引文献24

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部