期刊文献+

基于内容特征的智能视频浓缩应用研究

On the Application of Intelligent Video Concentration Based on Content Features
下载PDF
导出
摘要 随着科学技术的日新月异,智能视频日益成为人们日常生活的重要组成部分。内容特征在智能视频浓缩的应用中是重要的一个部分,因此,必须了解视频摘要及其检测的内涵。而要智能化视频浓缩情况,则须掌握DSP与智能算法这两个方面,同时还包括提取关键帧、构建背景建模、提取运动对象目标、根据时间轴进行非线性的分割以及归类并检索对象等内容,从而为探索更为先进的智能视频寻求科学的方案。 With the development of science and technology, intelligent video is becoming an impor- tant part in our daily life. Content features are a vital part in the application of intelligent video concen- tration. Thus, we must understand the connotation of its abstract and check. What's more, in order to know much about the situation of its concentration, mu must master DSP and intelligent algorithms, in- cluding the construction of key frame extraction, background models, moving object extraction, target according to the time axis to carry out nonlinear segmentation, the classification and the check so as to explore a more intelligent strategy of more advanced intelligent video
作者 康志辉
出处 《牡丹江教育学院学报》 2015年第8期120-121,共2页 Journal of Mudanjiang College of Education
基金 福建省中青年教师教育科研项目(JA14452)
关键词 内容特征 智能视频 浓缩 应用 content features intelligent video concentration application
  • 相关文献

参考文献5

二级参考文献22

  • 1庞尚珍,冯雪.基于内容的视频检索技术研究[J].硅谷,2009,2(17). 被引量:1
  • 2周颜军.数据结构[M].长春:吉林科学技术出版社,2003.
  • 3Taskirna C, Bountan C, Delp E J. The Vibe Video Dafabase System[C]//An Updated and Further Studies Proceedings of the SPIR/IS&T ConferEnce on Storage and Retrieval for Media Databases,2000:199-207.
  • 4Snoek C, Huumink B, Hollink L. Adding Semantics to Detectors for Video Retrival[J]. IRRR Transactions on Multi- media, 2007 (1) : 975-986.
  • 5Shahraray B. Scene Change Detection and Content-based Sampling of Video Sequence[J]. Proc of Spie, 1995, doi: 10. 1117/12. 206348.
  • 6Zabth R, Miller J, Mai K. A Feature-based Algorithm for Detecting and Classifying Scene Breaks[J]. Multimedia Sys- tem,2004(1) : 189-200.
  • 7Lowe D G. Distinctive Image Features from Scale--invariant Keypoints[J]. International Joural of Computer Vision, 2004(1) : 91-110.
  • 8Chang H S, Sul S S, Lee S U. Efficient Video Indexing Scheme for Content-based Retrieval[J]. IEEE Trans, on Cirsuits and Systems for Video Technology, 2001,9 (8):342-351.
  • 9Peng Jing. Multi-class Relevance Feedback Content-based Image Retrival[J]. Computer Vision and Image Understand- ing, 2003(1) : 234-241.
  • 10Tao Zhao,Ram Nevatia. Tracking Multiple Humans in Complex Situations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,(09).

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部