期刊文献+

射流循环DTB结晶器内的CFD模拟 被引量:2

CFD simulation of circulation flow caused by jet in DTB crystallizer
下载PDF
导出
摘要 采用RNG k-ε湍流模型对实验室级射流循环DTB蒸发结晶器内的单相流流场进行了数值模拟并优化结晶器结构,用欧拉多相流模型对优化的结晶器进行多相流模拟分析。结果表明,导流筒内射流满足线性扩展,其轴向速度分布基本满足高斯分布。刚进入导流筒内的射流段,轴线速度倒数与流程呈良好的线性关系,随射流的发展,轴线速度加速衰减。在入口直径恒定时,循环速率比随导流筒挡板间环隙面积与导流筒横截面积比的增加呈先增大再减小的趋势,存在最优值。优化的实验级DTB结晶器中导流筒内颗粒浓度分布沿径向方向减小,但基本可实现颗粒浓度较为均匀的分布,其循环速率与单相流模拟结果相比较低。 The circulation jet flow field in a DTB evaporating crystallizer was simulated and analyzed using RNG k-ε turbulent model. Based on the Eulerian multiphase flow model, the structure of the crystallizer and the flow field in the crystallizer were simulated and optimized. The simulation results showed that the jet could satisfy linear expansion in the draft tube and the axial velocity distribution basically met the Gaussian distribution. For the jet flow at entrance region of the draft tube, the reciprocal of axis velocity and flow distance showed a good linearity. However, axial velocity decayed faster with the development of the jet flow. The area ratio (β) of the annulus between draft tube and the baffle to the cross-section of the draft tube significantly influenced the circulation flow ratio (γ). With the increase of β, γ increased at first, and then decreased, accordingly an optimal γ exists. Although the particle concentration of the crystal slurry decreased along the radial direction in the draft tube, it still had a more even distribution within the optimized structure crystallizer.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第9期3383-3390,共8页 CIESC Journal
基金 国家自然科学基金项目(51176018) 中央高校基本科研业务费专项资金项目(DUT15LAB10)~~
关键词 湍动射流 计算流体力学 多相流 DTB结晶器 结晶 turbulent jet CFD multiphase flow DTB crystallizer crystallization
  • 相关文献

参考文献6

二级参考文献57

  • 1余常昭,李春华.圆形断面自由湍动射流卷吸的实验研究[J].气动实验与测量控制,1996,10(1):31-38. 被引量:18
  • 2陈芳,翟建华.精馏塔板上计算流体力学数学模型研究进展[J].河北工业科技,2006,23(1):51-53. 被引量:4
  • 3Sha Z, Palosaari S. Modeling and simulation of crystal size distribution in imperfectly mixed suspension crystallization. Journal of Chemical Engineering of Japan, 2002, 35 (11): 1188-1195
  • 4Wei H , Garside J. Application of CFD modeling to precipitation systems. Trans. IChemE, 1997, 75: 219-227
  • 5Marchisio D L, Barresi A A. CFD simulation of mixing and reaction: the relevance of the micro-mixing model. Chemical Engineering Science, 2003, 58:3579-3587
  • 6Jaworski Z, Nienow A W. CFD simulation of continuous precipitation of barium sulphate in a stirred tank. Chemical Engineering Journal, 2003, 91:167-174
  • 7Wei H, Zhou W, Garside J. Computational fluid dynamics modeling of the precipitation process in a semi-batch crystallizer. Ind. Eng. Res., 2001, 40:5525-5261
  • 8Wang L, Fox R O. Application of in situ adaptive tabulation to CFD simulation of nano-crystal formation by reactive precipitation. Chemical Engineering Science, 2003, 58:4387-4401
  • 9Vicum L, Ottinger S, Mazzotti M, Makowski L, Baldyga J. Multi-scale modeling of a reactive mixing process in a semibateh stirred tank. Chemical Engineering Science, 2004, 59:1767-1781
  • 10Yang G, Louhi-kultanen M, Kallas J. The CFD simulation of programmed batch cooling crystallization. Chemical Engineering Translations, 2002, 1:83-88

共引文献93

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部