期刊文献+

H_2S为毒物对乙炔氢氯化反应中AuCl_3/AC催化剂催化活性的影响 被引量:6

Poisoning effect of H_2S on catalytic performance of AuCl_3/AC in acetylene hydrochlorination
下载PDF
导出
摘要 采用等体积浸渍法制备了1%AuCl3/AC催化剂,探究了硫化氢(H2S)为毒物对乙炔氢氯化反应中催化剂催化活性的影响及失活机理。催化活性测试结果表明,以H2S为毒物可导致乙炔氢氯化反应中的AuCl3/AC催化剂的失活,且是一个不可逆过程;程序升温还原(TPR)和X射线光电子能谱(XPS)分析结果表明,H2S的加入可有效地加快Au3+还原为Au0;透射电镜能谱(TEM-EDX)观测分析形成的Au-S化合物也可导致催化剂失活,即随着H2S量的增大,更多的Au3+被还原为Au0,且形成的Au-S化合物覆盖在活性位点,使有效的活性组分降低进而导致AuCl3/AC催化剂失活。 A study about poisoning effect of hydrogen sulfide (H2S) on the catalytic performance of AuCl3/AC during acetylene hydrochlorination deactivation is described and discussed. 1% AuCl3/AC catalyst is prepared by an incipient wetness impregnation technique. The activity tests demonstrate that H2S poisoning results in the rapid and irreversible deactivation of AuCl3/AC catalyst in acetylene hydrochlorination. Temperature-programmed reduction (TPR) and X-ray photoelectron spectra (XPS) show that H2S addition can effectively accelerate active Au^3+ reduction to metallic Au^0. The formation of metal sulfide may also be another reason for catalyst deactivation in the presence of H2S, which is supported by transmission electron microscopy (TEM) and energy dispersion X-ray spectrometer (EDX) techniques. In other words, with the increase of H2S added to the feed gases, the content of Au^3+ is greatly reduced to metallic Au^0. Moreover, the active sites are covered with Au-S compound. Both of them could reduce the effective active component, leading to the deactivation of the AuCl3/AC catalyst.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第9期3476-3482,共7页 CIESC Journal
基金 国家自然科学基金项目(21366027)~~
关键词 H2S AuCl3/AC 催化 失活机理 乙炔氢氯化 H2S AuCl3/AC catalysis deactivation mechanism acetylene hydrochlorination
  • 相关文献

参考文献27

  • 1Trotus I T, Zimmermann T, Schuth F. Catalytic reactions of acetylene: a feedstock for the chemical industry revisited[J]. Chern. Rev., 2013, 114(3): 1761-1782.
  • 2Steinborn D. Fundamentals of organometallic catalysis[M]. New York: John Wiley & Sons, 20 II.
  • 3Chen Y, Xie C, Li Y, Song C, Bolin T B; Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study[J]. Phys. Chern. Chern. Phys., 2010, 12(21): 5707-5711.
  • 4Adesina A A. Hydrocarbon synthesis via Fischer-Tropsch reaction: travails and triumphs[J]. Appl. Catal' A: General, 1996, 138(2): 345-367.
  • 5Wood B J, Isakson W E, Wise H. Kinetic studies of catalyst poisoning during methanol synthesis at high pressures[J]. Ind. Eng. Chern. Prod. Res. Dev., 1980, 19(2): 197-204.
  • 6Fitzharris W D, Katzer J R, Manogue W H. Sulfur deactivation of nickel methanation catalysts[J]. J. Catal., 1982,76(2): 369-384.
  • 7Rodriguez J A, Dvorak J, Jirsak T, Li S Y, Hrbek J, Capitano A T, Gland J L. Chemistry of thiophene, pyridine, and cyclohexylamine on Ni/Mofs, and NilSlMo (110) surfaces: role of nickel in hydrodesulfurization and hydrodenitrogenation processes[J]. J. Phys. Chern. B., 1999,103(39): 8310-8318.
  • 8Chattanathan S A, Adhikari S, McVey M, Fasina O. Hydrogen production from biogas reforming and the effect of H2S on C conversion[J]. Int. J. Hydrogen Energy, 2014, 39(35): 19905-19911.
  • 9Beale A M, Gibson E K, O'Brien M G, Jacques S D, Cernik R J, di Michiel M, Weckhuysen B M. Chemical imaging of the sulfur-induced deactivation of Cu/ZnO catalyst bodies[J]. J. Catal., 2014,314: 94-100.
  • 10Appari S, Janardhanan V M, Bauri R, Jayanti S, Deutschmann O. A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning[J]. Appl. Catal. A: General, 2014,471: 118-125.

同被引文献31

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部