期刊文献+

预处理条件及金属离子改性对H-MOR分子筛的DME羰基化性能影响 被引量:7

Influence of pretreatment and metal cation modification of H-MOR zeolite on performance of DME carbonylation
下载PDF
导出
摘要 详细了考察不同预处理条件及反应温度对丝光沸石(H-MOR)分子筛二甲醚(DME)羰基化制取醋酸甲酯(MA)的催化活性和稳定性的影响。研究结果表明,在氮气气氛中500℃预处理2 h、反应温度为180℃时H-MOR催化剂的DME转化率最高,可达20.5%。虽然提高反应温度可以进一步提高催化剂的DME转化率,但易产生积炭,快速失活。此外,还考察了金属离子改性对H-MOR催化剂DME羰基化活性的影响。采用离子交换法制备了Cu、Ni、Fe和Co等金属离子交换的H-MOR催化剂,活性测试结果表明:IE-Cu催化剂活性最好,DME转化率为36.9%;IE-Ni催化剂的活性最稳定,DME转化率稳定在24.5%。还原温度对IE-Cu催化剂DME羰基化活性有重要影响,450℃还原后的IE-Cu催化剂活性要明显高于300℃还原的IE-Cu。 The influence of the pretreatment conditions and reaction temperature of the H-MOR zeolite on the performance of DME carbonylation was investigated. It was found that after the sample was pretreated in N2 flow at 500℃ for 2 h, the DME conversion reached 20.5% at 180℃. The DME conversion of the H-MOR increased with increasing reaction temperature, but the serious coking at higher temperatures resulted in the deactivation of the catalyst. Additionally, Cu, Fe, Ni and Co cations were used to modify the H-MOR zeolite, and to explore the influence of metal cation modification of the H-MOR zeolite on the performance of DME carbonylation. The catalytic tests showed that the IE-Cu catalyst was more active with the DME conversion of 36.9%, while the IE-Ni catalyst was more stable with the DME conversion of around 24.5% at the whole reaction period. Moreover, the influence of reduction temperature of the IE-Cu zeolite on the performance of DME carbonylation was also studied. The catalytic activity of the pre-reduced IE-Cu at 450℃was higher than that pre-reduced at 300℃.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第9期3504-3510,共7页 CIESC Journal
基金 国家自然科学基金项目(21476159) 煤转化国家重点实验室开放课题(J15-16-902)~~
关键词 丝光沸石 二甲醚 羰基化 金属离子改性 H-mordenite dimethyl ether carbonylation metal cation modification
  • 相关文献

参考文献24

  • 1Cardona C A, Sanchez 6 J. Fuel ethanol production: process design trends and integration opportunities[J]. Bioresource Technology, 2007,98(12): 2415-2457.
  • 2Atkins M P, Smith D J H, Westlake D J. Montmorillonite catalysts for ethylene hydration[J]. Clay Miner., 1983,18: 423-429.
  • 3Novotny M. Pre-pressuring methanol-cobalt with carbon monoxide in homologation ofmethanol[P] : US, 4283582. 1981-8-11.
  • 4Francoisse P B, Thyrion F C. Methanol to ethanol by homologation: kinetic approach[J]. Industrial & Engineering Chemistry Product Research and Development, 1983,22(4): 542-48.
  • 5Ichikawa M, Fukushima T. Mechanism of syngas conversion into Cz-oxygenates such as ethanol catalysed on a Si02-supported Rh- Ti catalyst[J]. Journal of the Chemical Society, Chemical Communications, 1985, (6): 321-323.
  • 6Mei D, Rousseau R, Kathmann S M, Glezakou V A, Engelhard M H, Jiang W, Wang C M, Gerber M A, Stevens D J. Ethanol synthesis from syngas over Rh-based/Si'O, catalysts: a combined experimental and theoretical modeling study[J]. Journal of Catalysis, 2010, 271(2): 325-342.
  • 7Cheung P, Bhan A, Sunley G J, Iglesia E. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angewandte Chemie International Edition, 2006, 45(10): 1617- 1620.
  • 8Bhan A, Allian A D, Sunley G J, Law D J, Iglesia E. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. Journal of the American Chemical Society, 2007,129(16): 4919-4924.
  • 9Cheung P, Bhan A, Sunley G J, Law D J, Iglesia E. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolite[J]. Journal of Catalysis, 2007, 245(1): 110-123.
  • 10Bhan A, Iglesia E. A link between reactivity and local structure in acid catalysis on zeolites[J]. Accounts of Chemical Research. 2008,41(4): 559-567.

二级参考文献48

  • 1X. Y. Yu, W. Liang, Y. J. Du, and J. J. Cheng, Mater Rev. 14, 38 (2000).
  • 2K. Fujimoto, T. Shil~da, K. Omata, and H. Tominnaga Chem. Lett. 12, 2047 (1984).
  • 3P. S. Sai Prasad, J. W. Bae, S. H. Kang, Y. J. Lee, and K. W. Jun, Fuel. Process. Technol. 89, 1281 (2008).
  • 4M. H. Qiu, Y. P. Li, T. J. Wang, Q. Zhang, C. G. Wang, X. H. Zhang, C. Z. Wu, L. L. Ma, and K. Li, Appl. Energy 90, 3 (2012).
  • 5K. Takeishi and A. Arase, 5th IASME/WSEAS International Conference on Energy and Environment, 23 (2010).
  • 6Z. F. Yan, J. Z. Xu, S. K. Shen, and H. L. Wang, Chin. J. Chem. Phys. 9, 464 (1996).
  • 7F. E. Paulik and J. F. Roth, Chem. Commun. 1578 (1968).
  • 8G. J. Sunley and D. J. Watson, Catal. Today. 58, 293 (2000).
  • 9P. Cheung, A. Bhan, G. J. Sunley, and E. Igleisa, Angew. Chem. Int. Ed. 45, 1617 (2006).
  • 10P. Cheung, A. Bhan, G. J. Sunley, D. J. Law, and E. Igleisa, J. Catal. 245, 110 (2007).

共引文献4

同被引文献64

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部