期刊文献+

CH_4-N_2在MOFs结构材料中的吸附分离性能 被引量:8

Adsorption and separation of CH_4-N_2 with different structural MOFs
下载PDF
导出
摘要 针对甲烷氮气的分离难题,通过溶剂热法大量合成了6种典型的由单齿、多齿与多元配体构建的金属有机框架材料,并利用单组分静态与双组分动态吸附法分别研究了甲烷与氮气在材料中的吸附行为。研究结果表明,MOFs材料相对较弱的极性,致使其甲烷氮气的分离选择性明显优于Si/Al分子筛;多齿配体MOFs材料因配体较长,孔道较大,具有与活性炭相当的甲烷氮气分离选择性;MOFs中的不饱和金属位增大了孔道极性,不利于分离性能的提高;单齿甲酸配体构建的超微孔[Ni3(HCOO)6]框架具有非常优异的CH4/N2分离性能,其选择性高达7.0,是Si/Al分子筛与活性炭的2倍。这为高效甲烷氮气分离材料的设计提供了新的参考依据。 For CH4-N2 separation with high-efficiency, several typical MOFs based on different ligands with high surface areas were synthesized in large scale via the simple solvothermal method, and their CH4/N2 separation performance was investigated experimentally by pure gas adsorption and binary gas breakthrough experiments. The results show that the adsorptive separation selectivity of most MOFs is much higher than that of Si/Al zeolites owing to their lower polarity, and the selectivity of MOFs with multidentate ligands are similar with that of high-quality activated carbon because their wide pore sizes resulted from the long linkers are not good for the separation of CH4/N2. In addition, the open metal sites in MOFs increase channel polarity, which is not conducive to improving the separation selectivity of CH4/N2 mixtures. Fortunately, the ultra-microporous adsorbent (0.5 nm) based on monodentate ligand, namely [Ni3(HCOO)6] synthesized by the short linker of HCOO^- and Ni^2+, has a much higher selectivity up to 7.0, twice that of conventional adsorbents, such as Si/Al zeolites and actvited carbons. In a word, the knowledge obtained in this work provides a foundation for the design of new nanoporous materials towards the CH4/N2 separation with high-efficiency.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第9期3518-3528,共11页 CIESC Journal
基金 国家自然科学基金项目(21476231)~~
关键词 吸附 分离 甲烷 氮气 金属有机框架 adsorptive separation methane nitrogen metal-organic framework
  • 相关文献

参考文献44

  • 1Hevia MAG, Fissore D, Ordonez S, Diez F V, Barresi A A. Combustion of medium concentration CH,-air mixture in non-stationary reactors[J]. Chern. Eng. J., 2007, 131(1/3): 343-349.
  • 2Johnson III R D. NIST Computational chemistry comparison and benchmark database, NIST standard reference database[DB]. [2013-08-16). http://cccbdb.nist.gov/.
  • 3Perry R H, Green D W. Perry's Chemical Engineers' Handbook[M]. New York: McGraw-Hill, 1999.
  • 4David C B, John L B, Arash A. Nitrogen removal from natural gas: phase II[M]. Washington, DC: U.S. Department of Energy, 1999.
  • 5Simone C, Carlos A G, Alirio E R. Separation of CR,/C021N2 mixtures by layered pressure swing adsorption for upgrade of natural gas[J]. Chern. Eng. Sci., 2006, 61(12): 3893-3906.
  • 6Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, Corma A, Mirodatos C. Natural gas treating by selective adsorption: material science and chemical engineering interplay[J]. Chern. Eng. J., 2009, 155(3): 553-566.
  • 7Zhou Li, Guo Wencai, Zhou Yaping. A feasibility study of separating CH.,IN2 by adsorption[J]. Chinese J. Chern. Eng., 2002, 10(5): 558-561.
  • 8Balys M R, Buczek B. Comparison mixture of separation of methane-nitrogen on a carbon molecular sieve and on a natural zeolite[J]. Przern. Chern., 2008, 87(2): 98-101.
  • 9Simone C, Carlos A G, Alirio E R. Adsorption equilibrium of methane, carbon dioxide and nitrogen on zeolite 13X at high pressures[J]. J. Chern. Eng. Data, 2004, 49(4): 1095- 1101.
  • 10Jayaraman A, Yang R T, Chinn D, Munson C L. Tailored c1inoptilolites for nitrogen/methane separation[J]. Ind. Eng. Chern. Res., 2005, 44(14): 5184-5192.

二级参考文献70

共引文献38

同被引文献46

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部