期刊文献+

磺化含酚酞侧基聚芳醚酮/氧化石墨烯复合质子交换膜的性能 被引量:3

Properties of hybrid SPEK-C/GO composite proton exchange membranes
下载PDF
导出
摘要 采用共混制备了一系列磺化含酚酞侧基聚芳醚酮(SPEK-C)/氧化石墨烯(GO)复合质子交换膜,系统地研究了GO含量对复合膜性能的影响。结果表明,GO含量对膜的离子交换容量、稳定性、质子电导率和甲醇渗透率等有重要影响。复合膜质子电导率随GO含量增加而提高,GO含量为2%和5%的复合膜在80℃下质子电导率均在10-1 S·cm-1以上。80℃下,GO含量为5%的复合膜甲醇渗透率为6.69×10-7 cm2·s-1,低于同温度下复合前SPEK-C膜1个数量级。复合后膜的化学稳定性增强,离子交换容量和含水率均有提高,相对选择性明显增大,最高达SPEK-C的18.2倍。 A series of sulfonated phenolphthalein side poly (aryl ether ketone) (SPEK-C)/graphene oxide (GO) hybrid composite proton exchange membranes was fabricated. The effect of GO as a filler blending with SPEK-C was investigated systematically. The results indicated that GO content in the membrane had a great influence on ionic exchange capacity, stability, proton conductivity and methanol permeability. The proton conductivity was enhanced with increasing GO content. Moreover, the proton conductivity of the composite membranes with 2% and 5% GO was all above 10^-1 S·cm^-1 at 30℃. The composite membrane containing 5% GO exhibited methanol permeability of 6.7×10^-8 cm^2·s^-1 at 30℃, which was one order of magnitude lower than that of SPEK-C membrane. The ionic exchange capacity, stability and water uptake were enhanced, and the relative selectivity reached up to 18.2 times higher than that of the SPEK-C membrane.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第9期3605-3610,共6页 CIESC Journal
基金 福建省科技计划项目(2014H0043)
关键词 燃料电池 电解质 聚芳醚酮 氧化石墨烯 质子交换膜 fuel cells electrolytes membranes poly (aryl ether ketone) graphene oxide proton exchange membranes
  • 相关文献

参考文献22

  • 1Zhang H W, Shen P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chern. Rev., 2012,112: 2780-2832.
  • 2Bose S, Kuila T, Nguyen T X H. Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges[J]. Prog. Polym. Sci., 2011,36: 813-843.
  • 3Bernardi D, Verbrugge M. A mathematical model of the solid polymer-electrolyte fuel cell[J]. J Electrochem. Soc., 1992, 139: 2477-2491.
  • 4Li L, Zhang J, Wang Y. Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell[J]. J Membrane. Sci., 2003, 226: 159-167.
  • 5Wilhelm F G, Piint I, Vander V F. Cation permeable membranes from blends of sulfonated poly (ether ether ketone) and poly ( ether sulfone)[J]. J Membrane. Sci., 2002, 199: 167-176.
  • 6Ounaies Z, Park C, Wise K E, et al. Electrical properties of single wall carbon nanotube reinforced polyimide composites[J]. Compos. Sci. Technol., 2003, 63: 1637-1646.
  • 7Hickner M, Ghassemi H, Kim Y S. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chern. Rev., 2004, 104: 4587-4612.
  • 8Roziere J, Deborah J J. Non-fluorinated polymer materials for proton exchange membrane fuel cells[J]. Annu. Rev. Mater. Res., 2003, 33: 503-555.
  • 9Rinaudo M. Chitin and chitosan: properties and applications[J]. Prog. Polym. Sci., 2006, 31: 603-632.
  • 10Chen J H, Liu Q L, Zhu A M. Dehydration of acetic acid using sulfonation cardo polyetherketone (SPEK-C) membranes[J]. J. Membrane. Sci., 2008, 308: 171-179.

同被引文献15

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部