期刊文献+

一种基于因果网络的支持向量回归特征选择算法 被引量:1

A Support Vector Regression Feature Selection Method Based on Causal Network
下载PDF
导出
摘要 为了提高支持向量回归算法的学习能力,提出了一种基于因果网络的特征选择算法.该方法假设目标变量和特征候选集之间符合一个因果网络模型,然后利用基于条件独立性测试的方法对目标变量的直接影响特征进行识别,从候选特征集之中获取与目标变量有着直接因果关系的特征子集.虚拟和真实数据集上的实验结果表明,该特征选择算法适用于支持向量回归算法,优于目前其他算法. In order to improve Support Vector Regression (SVR) learning ability, a novel feature selection method based on causal network is proposed. Firstly, the target variable and its candidate feature set are assumed to conform a causal network model. Subsequently, the causal feature can be detected by conditional independence test based method. Both virtual and real experimental results show that the proposed algorithm outperforms other methods when applied to SVR.
作者 陈一明
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2015年第4期90-94,F0003,共6页 Journal of Natural Science of Hunan Normal University
基金 广东省教育科学"十二五"规划研究项目(13JXN052)
关键词 支持向量回归 特征选择 因果网络 条件独立性测试 support vector regression feature selection causal network conditional independence test
  • 相关文献

参考文献14

  • 1CAO L J, CHUA K S, CHONG W K, et al. A comparison of SA, KSA and ICA for dimensionality reduction in support vector machine[ J]. Neurocomputing, 2003,55 ( 1 ) :321-336.
  • 2PENG H, LONG F, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and rain-redundancy [ J ]. Patt Anal Machine Intel, IEEE Trans, 2005,27 (8) : 1226-1238.
  • 3MAJI P, GARAI P. On fuzzy-rough attribute selection: criteria of max-dependency, max-relevance, min-redundancy, and max- significance [ J ]. Appl Soft Comput, 2013,13 (9) : 3968 -3980.
  • 4CAI R, HAO Z, YANG X, et al. An efficient gene selection algorithm based on mutual information [ J ]. Neurocomputing, 2009,72(4) :991-999.
  • 5MAJI P, PAUL S. Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data [J]. Int J Approx Reason, 2011,52(3) :408-426.
  • 6PEARL J. Causality : models, reasoning and inference [ M ]. Cambridge : The MIT press, 2000.
  • 7COVER T M, THOMAS J A, Elements of Information Theory[M]. New Jersey: Wiley, 2005.
  • 8SPIRTES, GLYMOUR C, SCHEINES R. Causation, prediction, and search[ M]. Cambridge:The MIT Press, 2000.
  • 9TSAMARDINOS I, BROWN L E, ALIFERIS C F. The max-min hill-climbing Bayesian network structure learning algorithm [J]. Machine Learning, 2006,65(1) :31-78.
  • 10JANZING D, MOOIJ J, ZHANG K, et al. Information-geometric approach to inferring causal directions [ J ]. Artif Intell, 2012,56(10) :5168-5194.

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部