期刊文献+

基于JSCNM算法的微博网络社区发现研究

Research on the Microblogging Network Community Discovery Based on JSCNM Algorithm
原文传递
导出
摘要 提出一种将用户关系和用户兴趣两者融合的社区发现算法——JSCNM算法,然后利用JS距离公式计算用户兴趣相似度距离,使用相似度代替模块度对用户关系和用户兴趣双内聚处理,发现用户社区。最后通过爬取新浪微博4个数据集进行实验操作,并对照CNM算法和GN算法,结合社区评价标准模块度的大小,证明该算法能够更准确、合理地发现用户社区。 A kind of community discovery algorithm which was named JSCNM fused the relationship between user links and user interests was proposed. JS distance formula was used to calculate the user interest similarity distance, and the user community was discovered by using the similarity degree of relationship between user links and interests instead of modularity. Finally, through CNM and GN algorithm by using four experimental data set for operation and combined with modularity the community evaluation standard, JSCNM algorithm was proved to be better in finding more accurate and reasonable user communities.
出处 《互联网天地》 2015年第8期33-41,共9页 China Internet
关键词 微博网络 社区发现 主题模型 JS距离 CNM算法 microblogging network community discovery topic model Jensen-Shannon divergence CNM algorithm
  • 相关文献

参考文献14

二级参考文献105

  • 1Tom Chao Zhou,Hao Ma,Michael R.Lyu,Irwin King.UserRec:A User Recommendation Framework in Social Tagging Systems.Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10).http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1927/2237.2010.
  • 2PAUL HEYMANN,HECTOR G M.Collaborative creation of communal hierarchical taxonomies in social tagging systems.http://ilpubs.stanford.edu:8090/775/1/2006-10.pdf.2006.
  • 3Newman M E J,Girvan M.Finding and evaluating community structure in networks.Phys Rev E,2004;69(2):26-113.
  • 4燕飞.等.综合社会行动者兴趣和网络拓扑的社区发现方法[J].计算机研究与发展,2010(47):357-362.
  • 5LANCICHINETTI A, FORTUNATO S, KERT J. Detecting the overlapping and hierarchical community structure in complex networks[J]. New Journal of Physics, 2009,3 (11) : 15-33.
  • 6NEWMAN M E J. Communities modules and large-scale structure in networks[J]. Nature Physics, 2012(1) :25-31.
  • 7KERNIGHAN B W, LIN S. An efficient heuristic procedure for partitioning graphs [J]. Bell System Technical Journal, 1970.49 (2) : 291-307.
  • 8NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 1-5.
  • 9CLAUSET A, NEWMAN M E J. Finding community structure in very large networks [J]. Physics Review E, 2004, (70) :71-76.
  • 10GIRVAN M, NEWMAN M E J. Community structure in social and biological networks [J]. Proc. of the National Academy of Science, 2002, 12(9) :7821-7826.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部